Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T12:39:28.142Z Has data issue: false hasContentIssue false

Controlled photo-discharge of dust in a complex plasma

Published online by Cambridge University Press:  26 April 2021

Michael McKinlay*
Affiliation:
Physics Department, Auburn University, Auburn, AL39849, USA
Edward Thomas Jr.
Affiliation:
Physics Department, Auburn University, Auburn, AL39849, USA
*
Email address for correspondence: mjm0066@auburn.edu

Abstract

One of the limitations in studying dusty plasmas is that many of the important properties of the dust (like the charge) are directly coupled to the surrounding plasma conditions rather than being determined independently. The application of high-intensity ultraviolet (UV) sources to generate discharging photoelectric currents may provide an avenue for developing methods of controlling dust charge. Careful selection of the parameters of the UV source and dust material may even allow for this to be accomplished with minimal perturbation of the background plasma. The Auburn Magnetized Plasma Research Laboratory (MPRL) has developed a ‘proof-of-concept’ experiment for this controlled photo-discharging of dust; a high-intensity, near-UV source was used to produce large changes in the equilibrium positions of lanthanum hexaboride ($\textrm {LaB}_6$) particles suspended in an argon DC glow discharge with negligible changes in the potential, density and temperature profiles of the background plasma. The shifts in equilibrium position of the dust are consistent with a reduction in dust charge. Video analysis is used to quantify the changes in position, velocity and acceleration of a test particle under the influence of the UV and Langmuir probes are used to measure the effects on the plasma.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barkan, A., Merlino, R. L. & D'Angelo, N. 1995 Laboratory observation of the dust-acoustic wave mode. Phys. Plasmas 2 (10), 35633565.10.1063/1.871121CrossRefGoogle Scholar
Barnes, M. S., Keller, J. H., Forster, J. C., O'Neill, J. A. & Coultas, D. K. 1992 Transport of dust particles in glow-discharge plasmas. Phys. Rev. Lett. 68 (3), 313316.10.1103/PhysRevLett.68.313CrossRefGoogle ScholarPubMed
Brochard, F., Shalpegin, A., Bardin, S., Lunt, T., Rohde, V., Briançon, J., Pautasso, G., Vorpahl, C. & Neu, R. 2016 Video analysis of dust events in full-tungsten ASDEX upgrade. Nucl. Fusion 57 (3), 036002.10.1088/1741-4326/aa4e56CrossRefGoogle Scholar
Epstein, P. S. 1924 On the resistance experienced by spheres in their motion through gases. Phys. Rev. 23 (6), 710733.10.1103/PhysRev.23.710CrossRefGoogle Scholar
Fisher, R. & Thomas, E. 2010 Thermal properties of a dusty plasma in the presence of driven dust acoustic waves. IEEE Trans. Plasma Sci. 38 (4), 833837.10.1109/TPS.2009.2032550CrossRefGoogle Scholar
Goertz, C. K. 1989 Dusty plasmas in the solar system. Rev. Geophys. 27 (2), 271.10.1029/RG027i002p00271CrossRefGoogle Scholar
Goree, J., Morfill, G. E., Tsytovich, V. N. & Vladimirov, S. V. 1999 Theory of dust voids in plasmas. Phys. Rev. E 59 (6), 70557067.10.1103/PhysRevE.59.7055CrossRefGoogle ScholarPubMed
Hall, T. H. & Thomas, E. 2016 A study of ion drag for ground and microgravity dusty plasma experiments. IEEE Trans. Plasma Sci. 44 (4), 463468.10.1109/TPS.2015.2506988CrossRefGoogle Scholar
Hall, T., Thomas, E., Avinash, K., Merlino, R. & Rosenberg, M. 2018 Methods for the characterization of imposed, ordered structures in MDPX. Phys. Plasmas 25 (10), 103702.10.1063/1.5049594CrossRefGoogle Scholar
Horányi, M. 2004 Dusty plasma effects in Saturn's magnetosphere. Rev. Geophys. 42 (4), RG4002.10.1029/2004RG000151CrossRefGoogle Scholar
Hutchinson, I. H. 2003 Ion collection by a sphere in a flowing plasma: 2. Non-zero debye length. Plasma Phys. Control. Fusion 45 (8), 14771500.10.1088/0741-3335/45/8/307CrossRefGoogle Scholar
Hutchinson, I. H. 2004 Ion collection by a sphere in a flowing plasma: 3. Floating potential and drag force. Plasma Phys. Control. Fusion 47 (1), 7187.10.1088/0741-3335/47/1/005CrossRefGoogle Scholar
Hutchinson, I. H. 2006 Collisionless ion drag force on a spherical grain. Plasma Phys. Control. Fusion 48 (2), 185202.10.1088/0741-3335/48/2/002CrossRefGoogle Scholar
Kersten, H., Wiese, R., Thieme, G., Hlich, M. F., Kopitov, A., Bojic, D., Scholze, F., Neumann, H., Quaas, M., Wulff, H., et al. 2003 Examples for application and diagnostics in plasma–powder interaction. New J. Phys. 5, 9393.10.1088/1367-2630/5/1/393CrossRefGoogle Scholar
Khrapak, S. A., Ivlev, A. V., Morfill, G. E. & Thomas, H. M. 2002 Ion drag force in complex plasmas. Phys. Rev. E 66 (4), 046414.10.1103/PhysRevE.66.046414CrossRefGoogle ScholarPubMed
Kimura, H. 2016 On the photoelectric quantum yield of small dust particles. Mon. Not. R. Astron. Soc. 459 (3), 27512761.10.1093/mnras/stw820CrossRefGoogle Scholar
Liu, B. & Goree, J. 2008 Superdiffusion and non-gaussian statistics in a driven-dissipative 2d dusty plasma. Phys. Rev. Lett. 100 (5), 055003.10.1103/PhysRevLett.100.055003CrossRefGoogle Scholar
Lynch, B., Konopka, U. & Thomas, E. 2016 Real-time particle tracking in complex plasmas. IEEE Trans. Plasma Sci. 44 (4), 553557.10.1109/TPS.2015.2505062CrossRefGoogle Scholar
Morooka, M. W., Wahlund, J.-E., Eriksson, A. I., Farrell, W. M., Gurnett, D. A., Kurth, W. S., Persoon, A. M., Shafiq, M., André, M., Holmberg, M. K. G., et al. 2011 Dusty plasma in the vicinity of Enceladus. J. Geophys. Res.: Space Phys. 116 (A12), A12221.Google Scholar
Rosenberg, M., Mendis, D. & Sheehan, D. 1996 UV-induced Coulomb crystallization of dust grains in high-pressure gas. IEEE Trans. Plasma Sci. 24 (6), 14221430.10.1109/27.553210CrossRefGoogle Scholar
Rubel, M., Widdowson, A., Grzonka, J., Fortuna-Zalesna, E., Moon, S., Petersson, P., Ashikawa, N., Asakura, N., Hamaguchi, D., Hatano, Y., et al. 2018 Dust generation in tokamaks: overview of beryllium and tungsten dust characterisation in JET with the ITER-like wall. Fusion Engng Des. 136, 579586.10.1016/j.fusengdes.2018.03.027CrossRefGoogle Scholar
Shafiq, M., Wahlund, J.-E., Morooka, M., Kurth, W. & Farrell, W. 2011 Characteristics of the dust–plasma interaction near Enceladus’ south pole. Planet. Space Sci. 59 (1), 1725.10.1016/j.pss.2010.10.006CrossRefGoogle Scholar
Shukla, P. K. & Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. Institute of Physics Pub.10.1887/075030653XCrossRefGoogle Scholar
Shumova, V., Polyakov, D., Mataybaeva, E. & Vasilyak, L. 2019 On the thermophoresis in dense dust structures in neon plasma. Phys. Lett. A 383 (27), 125853.10.1016/j.physleta.2019.125853CrossRefGoogle Scholar
Sickafoose, A. A., Colwell, J. E., Horányi, M. & Robertson, S. 2000 Photoelectric charging of dust particles in vacuum. Phys. Rev. Lett. 84 (26), 60346037.10.1103/PhysRevLett.84.6034CrossRefGoogle ScholarPubMed
Spitzer, L. 1941 The Dynamics of the Interstellar Medium. I. Local Equilibrium. Astrophys. J. 93, 369.10.1086/144273CrossRefGoogle Scholar
Thomas, E. 1999 Direct measurements of two-dimensional velocity profiles in direct current glow discharge dusty plasmas. Phys. Plasmas 6 (7), 26722675.10.1063/1.873544CrossRefGoogle Scholar
Thomas, E., Avinash, K. & Merlino, R. L. 2004 Probe induced voids in a dusty plasma. Phys. Plasmas 11 (5), 17701774.10.1063/1.1688333CrossRefGoogle Scholar
Thomas, E. & Watson, M. 1999 First experiments in the dusty plasma experiment device. Phys. Plasmas 6 (10), 41114117.10.1063/1.873672CrossRefGoogle Scholar
Thomas, H. M. & Morfill, G. E. 1996 Melting dynamics of a plasma crystal. Nature 379 (6568), 806809.10.1038/379806a0CrossRefGoogle Scholar
Thomas, H., Morfill, G. E., Demmel, V., Goree, J., Feuerbacher, B. & Möhlmann, D. 1994 Plasma crystal: Coulomb crystallization in a dusty plasma. Phys. Rev. Lett. 73 (5), 652655.10.1103/PhysRevLett.73.652CrossRefGoogle Scholar
Torgasin, K., Morita, K., Zen, H., Masuda, K., Katsurayama, T., Murata, T., Suphakul, S., Yamashita, H., Nogi, T., Kii, T., et al. 2017 Thermally assisted photoemission effect on CeB6 and LaB6 for application as photocathodes. Phys. Rev. Accel. Beams 20 (7), 073401.10.1103/PhysRevAccelBeams.20.073401CrossRefGoogle Scholar
Uglov, A. A. & Gnedovets, A. G. 1991 Effect of particle charging on momentum and heat transfer from rarefied plasma flow. Plasma Chem. Plasma Process. 11 (2), 251267.10.1007/BF01447245CrossRefGoogle Scholar
Watanabe, Y. 1997 Dust phenomena in processing plasmas. Plasma Phys. Control. Fusion 39 (5A), A59.10.1088/0741-3335/39/5A/007CrossRefGoogle Scholar
Winter, J. 2000 Dust: a new challenge in nuclear fusion research? Phys. Plasmas 7 (10), 3862.10.1063/1.1288911CrossRefGoogle Scholar
Wong, C.-S., Goree, J., Haralson, Z. & Liu, B. 2017 Strongly coupled plasmas obey the fluctuation theorem for entropy production. Nat. Phys. 14 (1), 2124.10.1038/nphys4253CrossRefGoogle Scholar