Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T10:59:37.847Z Has data issue: false hasContentIssue false

Demonstration of current drive by a rotating magnetic dipole field

Published online by Cambridge University Press:  01 April 2007

L. GIERSCH
Affiliation:
University of Washington, Department of Earth and Space Science, Seattle, WA 98195, USA (louisg@u.washington.edu)
J. T. SLOUGH
Affiliation:
University of Washington, Department of Earth and Space Science, Seattle, WA 98195, USA (louisg@u.washington.edu)
R. WINGLEE
Affiliation:
University of Washington, Department of Earth and Space Science, Seattle, WA 98195, USA (louisg@u.washington.edu)

Abstract.

A dipole-like rotating magnetic field was produced by a pair of circular, orthogonal coils inside a metal vacuum chamber. When these coils were immersed in plasma, large currents were driven outside the coils: the currents in the plasma were generated and sustained by the rotating magnetic dipole (RMD) field. The peak RMD-driven current was at roughly two RMD coil radii, and this current (60 kA m) was sufficient to reverse the ambient magnetic field (33 G). Plasma density, electron temperature, magnetic field and current probes indicated that plasma formed inside the coils, then expanded outward until the plasma reached equilibrium. This equilibrium configuration was adequately described by single-fluid magnetohydrodynamic equilibrium, wherein the cross product of the driven current and magnetic filed was approximately equal to the pressure gradient. The ratio of plasma pressure to magnetic field pressure, β, was locally greater than unity.

Type
Papers
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Cottrell, G., Jones, I. R., Lee, S., and Xu, S. 1991 Rev. Sci. Instrum. 62, 1787.CrossRefGoogle Scholar
[2]Euripides, P., Jones, I. R. and Deng, C. B. 1997 Nucl. Fusion 37, 1505.CrossRefGoogle Scholar
[3]Jones, I. R. 1999 Phys. Plasmas 6, 1950.CrossRefGoogle Scholar
[4]Knight, A. J. and Jones, I. R. 1990 Plasma Phys. Control. Fusion 32, 575.CrossRefGoogle Scholar
[5]Slough, J. T. and Miller, K. E. 2000 Phys. Plasmas 7, 1945.CrossRefGoogle Scholar
[6]Hoffman, A. J., Guo, H. Y., Slough, J. T., Tobin, S. J., Schrank, L. S., Reass, W. A. and Wurden, G. A. 2002 Fusion Sci. Technol. 41, 92.CrossRefGoogle Scholar
[7]Guo, H. Y., Hoffman, A. L., Brooks, R. D., Peter, A. M., Pietrzyk, Z. A., Tobin, S. J., and Votroubek, G. R. 2002 Phys. Plasmas 9, 185.CrossRefGoogle Scholar
[8]Kirolous, H. A., Brotherton-Ratcliffe, D. and Jones, I. R. 1989 Plasma Phys. Control. Fusion 31, 79.CrossRefGoogle Scholar
[9]Slough, J. T. and Giersch, L. 2005 AIAA Paper No. 2005-4461, 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit, Tucson, Arizona, July 2005.Google Scholar
[10]Kesner, J., Bromberg, L., Garnier, D. T. and Mauel, M. E. 1998 Paper No. IAEA-F1-CN-69-ICP/09, 17th IAEA Conference of Plasma Physics and Controlled Nuclear Fusion, Yokohama, Japan.Google Scholar
[11]Giersch, L., Andreason, S. and Slough, J. T. 2005 Rev. Sci. Instrum. 76, 093506.CrossRefGoogle Scholar
[12]Slough, J. T., Miller, K. E., Lotz, D. E. and Kostora, M. R. 2000 Rev. Sci. Instrum. 71, 3210.CrossRefGoogle Scholar
[13]Fiksel, G., Almagri, A. F., Craig, D., Iida, M., Prager, S. C. and Sarff, J. S. 1996 Plasma Sources Sci. Technol. 5, 78.CrossRefGoogle Scholar
[14]Kesner, J., Simakov, A. N., Garnier, D.Catto, T., Hastie, P. J., Krasheninnikov, R. J., Mauel, S. I., PedersenM. E., Sunn M. E., Sunn, Ramos, T. J. J., 2001 Nucl. Fusion 41 (3)301.CrossRefGoogle Scholar
[15]Garnier, D. T., Kesner, J. and Mauel, M. E. 1999 Phys. Plasmas 6, 3431.CrossRefGoogle Scholar