Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T11:01:09.394Z Has data issue: false hasContentIssue false

Detailed analytical investigation of magnetic field line random walk in turbulent plasmas: I. Two-component slab/two-dimensional turbulence

Published online by Cambridge University Press:  01 October 2008

I. KOURAKIS
Affiliation:
Centre for Plasma Physics, Queen's University, Belfast BT7 1NN, Northern Ireland, UK (i.kourakis@qub.ac.uk)
A. SHALCHI
Affiliation:
Institut für Theoretische Physik IV, Ruhr-Universität Bochum, D-44780 Bochum, Germany

Abstract

The random displacement of magnetic field lines in the presence of magnetic turbulence in plasmas is investigated from first principles. A two-component (slab/two-dimensional composite) model for the turbulence spectrum is employed. An analytical investigation of the asymptotic behavior of the field-line mean square displacement (FL-MSD) is carried out. It is shown that the magnetic field lines behave superdiffusively for very large values of the position variable z, since the FL-MSD σ varies as σ ~ z4/3. An intermediate diffusive regime may also possibly exist for finite values of z under conditions which are explicitly determined in terms of the intrinsic turbulent plasma parameters. The superdiffusive asymptotic result is confirmed numerically via an iterative algorithm. The relevance to previous results is discussed.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Schlickeiser, R. 2002 Cosmic Ray Astrophysics. Berlin: Springer.CrossRefGoogle Scholar
[2]Balescu, R. 1988 Transport Processes in Plasmas, Vol. 1, Classical Transport; Vol. 2, Neoclassical Transport. Amsterdam: North-Holland.Google Scholar
[3]Kourakis, I. 1999 Plasma Phys. Control. Fusion 41, 587.CrossRefGoogle Scholar
Kourakis, I. 2003 Rev. Mex. Física 49 (supl. 3), 130.Google Scholar
Kourakis, I. and Grecos, A 2003 Comm. Nonlin. Sci. Num. Sim. 8, 547.CrossRefGoogle Scholar
Kourakis, I. and Grecos, A. P. 2006 Eur. Phys. JB 50, 345349.CrossRefGoogle Scholar
[4]Jokipii, J. R. 1966 Astrophys. J. 146, 480.CrossRefGoogle Scholar
[5]Jokipii, J. R. and Parker, E. N. 1968 Phys. Rev. Lett. 21, 44.CrossRefGoogle Scholar
Jokipii, J. R. and Parker, E. N. 1969 Astrophys. J. 155, 777.CrossRefGoogle Scholar
[6]McComb, W. D. 1990 The Physics of Fluid Turbulence. New York: Oxford University Press.CrossRefGoogle Scholar
[7]Matthaeus, W. H. et al. 1995 Phys. Rev. Lett. 75 (11), 2136.CrossRefGoogle Scholar
[8]Kóta, J. and Jokipii, J. R. 2000 Astrophys. J. 531, 1067.CrossRefGoogle Scholar
[9]Webb, G. M., Zank, G. P., Kaghashvili, E. Kh. and le Roux, J. A. 2006 Astrophys. J. 651, 211.CrossRefGoogle Scholar
[10]Ruffolo, D. et al. 2006 Astrophys. J. 644, 971.CrossRefGoogle Scholar
[11]Ruffolo, D. et al. 2004 Astrophys. J. 614, 420.CrossRefGoogle Scholar
[12]Jokipii, J. R., Kóta, J. and Giacalone, J. 1993 Geophys. Res. Lett. 20, 1759.CrossRefGoogle Scholar
[13]Matthaeus, W. H. et al. 2003 Astrophys. J. 590, L53.CrossRefGoogle Scholar
[14]Shalchi, A., Bieber, J. W., Matthaeus, W. H. and Qin, G. 2004 Astrophys. J. 616, 617.CrossRefGoogle Scholar
[15]Shalchi, A. 2006 Astron. Astrophys. 453, L43.CrossRefGoogle Scholar
[16]Ragot, B. R. 2006 Astrophys. J. 644, 622.CrossRefGoogle Scholar
Ragot, B. R. 2006 Astrophys. J. 645, 1169.CrossRefGoogle Scholar
Ragot, B. R. 2006 Astrophys. J. 647, 630.CrossRefGoogle Scholar
[17]Shalchi, A. 2005 J. Geophys. Res. 110, A09103.CrossRefGoogle Scholar
[18]Qin, G., Matthaeus, W. H. and Bieber, J. W. 2002 Geophys. Res. Lett. 29.CrossRefGoogle Scholar
Qin, G., Matthaeus, W. H. and Bieber, J. W. 2002 Astrophys. J. 578, L117.CrossRefGoogle Scholar
[19]Shalchi, A., Kourakis, I. and Dosch, A. 2007 J. Phys. A: Math. Theor., 40, 11191.CrossRefGoogle Scholar
Shalchi, A. and Kourakis, I. 2006 Random walk of magnetic field lines for different values of the energy range spectral index. Phys. Plasmas, 14, 112901, 16.Google Scholar
[20]Shalchi, A. and Kourakis, I. 2007 Analytical description of stochastic field-line wandering in magnetic turbulence. Phys. Plasmas, 14, 092903, 16; also as e-print astro-ph/0703366 at http://arxiv.org/pdf/astro-ph/0703366.CrossRefGoogle Scholar
[21]Shalchi, A. and Kourakis, I. 2007 Astron. Astrophys. 470, 405.CrossRefGoogle Scholar
[22]Corrsin, S. 1959 Atmospheric Diffusion and Air Pollution, Advanced in Geophysics, Vol. 6 (ed. Frenkel, F. and Sheppard, P.). New York: Academic.Google Scholar
[23]Salu, Y. and Montgomery, D. C. 1977 Phys. Fluids 20, 1.CrossRefGoogle Scholar
[24]Lerche, I. 1973 Astrophys. J. 23, 339.Google Scholar
[25]Bieber, J. W. et al. 1994 Astrophys. J. 420, 294.CrossRefGoogle Scholar
[26]Abramowitz, M. and Stegun, I. A. 1974 Handbook of Mathematical Functions. New York: Dover Publications.Google Scholar
[27]Gradshteyn, I. S. and Ryzhik, I. M. 2000 Table of Integrals, Series, and Products. New York: Academic Press.Google Scholar
[28]Weisstein, E. W.Generalized Hypergeometric Function, from MathWorld – A Wolfram Web Resource, http://mathworld.wolfram.com/GeneralizedHypergeometricFunction.html.Google Scholar