Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T14:45:06.699Z Has data issue: false hasContentIssue false

Dispersion relations of dust lattice waves in two-dimensional honeycomb configuration

Published online by Cambridge University Press:  22 February 2013

B. FAROKHI*
Affiliation:
Department of physics, Faculty of science, Arak-University, 38156-8-8349 Arak, Iran (b-farokhi@araku.ac.ir)

Abstract

The linear dust lattice waves propagating in a two-dimensional honeycomb configuration is investigated. The interaction between particles is considered up to distance 2a, i.e. the third-neighbor interactions. Longitudinal and transverse (in-plane) dispersion relations are derived for waves in arbitrary directions. The study of dispersion relations with more neighbor interactions shows that in some cases the results change physically. Also, the dispersion relation in the different direction displays anisotropy of the group velocity in the lattice. The results are compared with dispersion relations of the waves in the hexagonal lattice.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bonitz, M., Henning, C. and Block, D. 2010 Rep. Prog. Phys. 73, 066501. doi:10.1083/0034-4885/73/6/066501CrossRefGoogle Scholar
Chu, J. H. and Lin, I. 1994 Phys. Rev. Lett. 72, 4009. doi:10.1103/PhysRevLett.72.4009CrossRefGoogle Scholar
Farokhi, B., Kourakis, I. and Shukla, P. K. 2006a Physics Lett. A 355, 122. doi:10.1016/j.Physleta.2006.02.016CrossRefGoogle Scholar
Farokhi, B., Kourakis, I. and Shukla, P. K. 2006b Phys. Plasmas 13, 122304. doi:10.1063/1.2400594CrossRefGoogle Scholar
Hamaguchi, S., Farouki, R. T. and Dubin, D. H. E. 1997 Phys. Rev. E 56, 4671. doi:10.1103/PhysRevE.56.4671Google Scholar
Kamimura, T., Suga, Y. and Ishihara, O. 2007 Phys. Plasmas 14, 123706.CrossRefGoogle Scholar
Koukouloyannis, V., Kevrekidis, P. G., Law, K. J. H., Kourakis, I. and Frantzeskakis, D. J. 2010 J. Phys. A: Math. Theor. 43, 235101.CrossRefGoogle Scholar
Kourakis, I. and Shukla, P. K. 2004 Phys. Plasmas 11, 1384. doi:10.1063/1.1687417CrossRefGoogle Scholar
Law, K. J. H., Kevrekidis, P. G., Koukouloyannis, V., Kourakis, I., Frantzeskakis, D. J. and Bishop, A. R. 2008 Phys. Rev. E 78, 066610.CrossRefGoogle Scholar
Melandso, F. 1996 Phys. Plasmas 3, 3890. doi:10.1063/1.871577CrossRefGoogle Scholar
Misawa, T., Ohno, N., Asano, K., Sawai, M., Takamura, S. and Kaw, P. K. 2001 Phys. Rev. Lett. 86, 1219. doi:10.1103/PhysRevLett.86.1219CrossRefGoogle Scholar
Nunomura, S., Samsonov, D. and Goree, J. 2000 Phys. Rev. Lett. 84, 5141. doi:10.1103/PhysRevLett.84.5141CrossRefGoogle Scholar
Peleg, O., Bartal, G., Freedman, B., Manela, O., Segev, M. and Christodoulides, D. 2007 Phys. Rev. Lett. 98, 103901.CrossRefGoogle Scholar
Pieper, J. B., Goree, J. and Quinn, R. A. 1996 J. Vac. Sci. Technol. A 14, 519. doi:10.1116/1.580118CrossRefGoogle Scholar
Srikantha, P. A., Woodhouse, J. and Fleck, N. A. 2006 J. Acoust. Soc. Am. 119, 1995.Google Scholar
Tang, Z., Zhang, H., Ye, Y., Zhao, C., Peng, R., Wen, S. and Fan, D. 2007 Solid State Commun. 141, 183.CrossRefGoogle Scholar
Thomas, H., Morfill, G. E., Demmel, V., Goree, J., Feuerbacher, B. and Mohlmann, D. 1994a Phys. Rev. Lett. 73 652. doi:10.1103/PhysRevLett.73.652CrossRefGoogle Scholar
Thomas, H., Morfill, G. E., Demmel, V., Goree, J., Feuerbacher, B. and Mohlmann, D. 1994b Phys. Rev. Lett. 73, 652.CrossRefGoogle Scholar
Vaulina, O., Khrapak, S. and Morfill, G. E. 2002 Phys. Rev. E 66, 016404. doi:10.1103/PhysRevE.66.016404Google Scholar
Vladimirov, S. V., Shevchenko, P. V. and Cramer, N. F. 1997 Phys. Rev. E 56, R74. doi:10.1103/PhysRevE.56.R74Google Scholar
Wang, X., Bhattacharjee, A. and Hu, S. 2001 Phys. Rev. Lett. 86, 2569. doi:10.1103/PhysRevLett.86.2569CrossRefGoogle Scholar