Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-14T16:21:35.488Z Has data issue: false hasContentIssue false

Drift wave driven zonal flows in electron–positron–ion plasmas

Published online by Cambridge University Press:  22 January 2010

T. D. KALADZE
Affiliation:
Department of Physics, Government College University, Lahore 54000, Pakistan Vekua Institute of Applied Mathematics, Tbilisi State University, 2 University Street, 0186 Tbilisi, Georgia
O. A. POKHOTELOV
Affiliation:
Institute of Physics of the Earth, Russian Academy of Sciences, 10 Bolshaya Gruzinskaya Street, Russian Federation, 123995 Moscow, Russia (O.A.Pokhotelov@sheffield.ac.uk, pokh@ifz.ru)
M. SHAD
Affiliation:
Department of Physics, Government College University, Lahore 54000, Pakistan

Abstract

The generation of large-scale zonal flows by small-scale electrostatic drift waves in electron–positron–ion (EPI) plasma is considered. The generation mechanism is based on the parametric excitation of convective cells by finite amplitude drift waves. To describe this process, the Hasegawa–Mima equation generalized for the case of EPI plasma is used. Explicit expressions for the maximum growth rate as well as for the optimal spatial dimensions of the zonal flows are obtained. Dependence of the growth rate on the spectrum purity of the wave packet is also investigated. The relevant instability conditions are determined.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Diamond, P. H., Itoh, S. I., Itoh, K. and Hahm, T. S. 2005 Zonal flows in plasma: a review. Plasma Phys. Controlled Fusion 47, R35R161.Google Scholar
Dubinov, A. E. and Sazonkin, M. A. 2009 Nonlinear theory of ion-acoustic waves in an electron–positron–ion plasma. Plasma Phys. Rep. 35, 1424.Google Scholar
Eliasson, B. and Shukla, P. K. 2005 Theory of relativistic phase-space holes in a hot-electron–positron–ion plasma. Phys. Plasmas 12, 104501.CrossRefGoogle Scholar
Esfandyari-Kalejahi, A., Kourakis, I., Mehdipoor, M. and Shukla, P. K. 2006 Electrostatic mode envelope excitations in e-p-i plasmas: applications in warm pair ion plasmas with a small fraction of stationary ions. J. Phys. A: Math. Gen. 39, 1381713830.CrossRefGoogle Scholar
Fujisawa, A. et al. 2004 Identification of zonal flows in a toroidal plasma. Phys. Rev. Lett. 93, 165002.CrossRefGoogle Scholar
Greaves, R. G. and Surko, C. M. 1995 An electron–positron beam-plasma experiment. Phys. Rev. Lett. 75, 38463849.CrossRefGoogle ScholarPubMed
Hall, J. O. and Shukla, P. K. 2005 Faraday rotation in an electron–positron plasma containing a fraction of ions. Phys. Plasmas 12, 084507.Google Scholar
Haque, Q. and Saleem, H. 2004 Large amplitude low frequency waves in a magnetized nonuniform electron–positron–ion plasma. Chin Phys. Lett. 21, 884887.CrossRefGoogle Scholar
Haque, Q., Saleem, H. and Mirza, A. 2005 Shear flow driven drift waves and the counter-rotating vortices. Phys. Plasmas 12, 104504.CrossRefGoogle Scholar
Helander, P. and Ward, D. G. 2003 Positron creation and annihilation in tokomak plasmas with runaway electrons. Phys. Rev. Lett. 90, 135004.Google Scholar
Jammalamadaka, S., Shukla, P. K. and Stenflo, L. 1996 Vortices in strongly magnetized nonuniform electron–positron–ion plasmas. Astrophys. Space Sci. 240, 3943.Google Scholar
Kaladze, T. D., Wu, D. J., Pokhotelov, O. A., Sagdeev, R. Z., Stenflo, L. and Shukla, P. K. 2005 Drift wave driven zonal flows in plasmas. Phys. Plasmas 12, 122311.CrossRefGoogle Scholar
Kaladze, T. D., Wu, D. J. and Yang, L. 2007 Small-scale drift-Alfven wave driven zonal flows in plasmas. Phys. Plasmas 14, 032305.Google Scholar
Kaladze, T. D., Shad, M. and Shah, H. A. 2009 Dynamics of large-scale vortical structures in electron–positron–ion plasmas. Phys. Plasmas 16, 024502.Google Scholar
Kourakis, I., Verheest, F. and Cramer, N. F. 2007 Nonlinear perpendicular propagation of ordinary mode electromagnetic wave packets in pair plasmas and electron–positron–ion plasmas. Phys. Plasmas 14, 022306.Google Scholar
Lee, W. H., Ramirez-Ruiz, E. and Page, D. 2005 Dynamical evolution of neutrino cooled accretion disks: detailed microphysics, lepton-driven convection, and global energetics. Astrophys. J. 632, 421437.Google Scholar
Mahmood, S. and Saleem, H. 2003 Nonlinear slow shear Alfven wave in electron–positron–ion plasmas. Phys. Plasmas 10, 46804684.Google Scholar
Masood, W., Jehan, N., Mirza, A. M. and Sakanaka, P. H. 2008 Planar and non-planar ion acoustic shock waves in electron–positron–ion plasmas. Phys. Lett. A 372, 42794282.Google Scholar
Moslem, W. M., Kourakis, I., Shukla, P. K. and Schlickeiser, R. 2007 Nonlinear excitation in electron–positron–ion plasmas in accretion disks of active galactic nuclei. Phys. Plasmas 14, 102901.Google Scholar
Mushtaq, A. 2008 Spatially limited ion acoustic drift soliton in electron–positron–ion plasma. Phys. Plasmas 15, 082313.Google Scholar
Pokhotelov, O. A., Onishchenko, O. G., Pavlenko, V. P., Stenflo, L., Shukla, P. K.Bogdanov, A. V. and Kamenets, F. F. 2001 Nonlinear drift-Alfven waves in relativistically hot multicomponent plasmas and their relevance to the fine structure of pulsar radioemissions. Astrophys. Space Sci. 277, 497505.Google Scholar
Popel, S. I., Vladimirov, S. V. and Shukla, P. K. 1995 Ion–acoustic solitons in electron–positron–ion plasmas. Phys. Plasmas 2, 716719.Google Scholar
Salamin, Y. I., Hu, S. X., Hatsagortsyan, K. Z. and Keitel, C. H. 2006 Relativistic high-power laser–matter interactions. Phys. Rep. 427, 41155.Google Scholar
Saleem, H., Haque, Q. and Vranjes, J. 2003 Nonlinear drift waves in electron–positron–ion plasmas. Phys. Rev. E 67, 057402.Google Scholar
Saleem, H. and Mahmood, S. 2003 Shear Alfven wave density dips in electron–positron–ion plasmas. Phys. Plasmas 10, 26122615.CrossRefGoogle Scholar
Shukla, P. K., Mamun, A. A. and Stenflo, L. 2003a Vortices in a strongly magnetized electron–positron–ion plasma. Phys. Scr. 68, 295297.CrossRefGoogle Scholar
Shukla, P. K. and Stenflo, L. 2002 Nonlinear interaction between drift waves and zonal flows. Eur. Phys. J. D. 20, 103106.Google Scholar
Shukla, P. K., Stenflo, L. and Fedele, R. 2003b Nonlinear effects caused by intense electromagnetic waves in an electron–positron–ion plasmas. Phys. Plasmas 10, 310313.Google Scholar
Zheleznyakov, V. V. and Koryagin, S. A. 2005 On the content of cold electrons in blazar and microquasar jets. Astron. Lett. 31, 713728.CrossRefGoogle Scholar