Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T03:41:08.031Z Has data issue: false hasContentIssue false

Dust-acoustic shock waves in a magnetized non-thermal dusty plasma

Published online by Cambridge University Press:  17 April 2014

M. SHAHMANSOURI
Affiliation:
Department of Physics, Faculty of Science, Arak University, Arak, Iran (mshmansouri@gmail.com)
A. A. MAMUN
Affiliation:
Department of Physics, Jahangirnagar University, Savar, Dhaka, Bangladesh

Abstract

A theoretical investigation is carried out to study the basic properties of dust-acoustic (DA) shock waves propagating in a magnetized non-thermal dusty plasma (containing cold viscous dust fluid, non-thermal ions, and non-thermal electrons). The reductive perturbation method is used to derive the Korteweg–de Vries–Burgers equation. It is found that the basic properties of DA shock waves are significantly modified by the combined effects of dust fluid viscosity, external magnetic field, and obliqueness (angle between external magnetic field and DA wave propagation direction). It is shown that the dust fluid viscosity acts as a source of dissipation, and is responsible for the formation of DA shock structures in the dusty plasma system under consideration. The implications of our results in some space and laboratory plasma situations are briefly discussed.

Type
Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alinejad, H. and Mamun, A. A. 2011 Oblique propagation of electrostatic waves in a magnetized electron-positron-ion plasma with superthermal electrons. Phys. Plasmas 18, 112103.Google Scholar
Asgari, H., Muniandy, S. V. and Wong, C. S. 2011 Dust-acoustic shock formation in adiabatic hot dusty plasmas with variable charge. Phys. Plasmas 18, 013702.Google Scholar
Baluku, T. K. and Hellberg, M. A. 2008 Dust acoustic solitons in plasmaswith kappa-distributed electrons and/or ions. Phys. Plasmas 15, 123705.CrossRefGoogle Scholar
Bandyopadhyay, P., Prasad, G., Sen, A. and Kaw, K. 2008 Experimental observation of strong coupling effects on the dispersion of dust acoustic waves in a plasma. Phys. Rev. Lett. 101, 065006.Google Scholar
Barkan, A.Merlino, R. L. and D'Angelo, N. 1995 Laboratory observation of the dust-acoustic wave mode. Phys. Plasmas 2, 3563.CrossRefGoogle Scholar
Cairns, R. A., Mamun, A. A., Bingham, R., Boström, R., Dendy, R. O., Nairn, C. M. C. and Shukla, P. K. 1995 Electrostatic solitary structures in non-thermal plasmas. Geophys. Res. Lett. 22, 2709.CrossRefGoogle Scholar
Cairns, R. A., Mamun, A. A., Bingham, R. and Shukla, P. K. 1996 Ion-acoustic solitons in a magnetized plasma with nonthermal electrons. Phys. Scripta 63, 80.Google Scholar
Chatterjee, P., Saha, T., Muniandy, S. V., Wong, C. S. and Roychoudhury, R. 2010 Ion acoustic solitary waves and double layers in dense electron-positron-ion magnetoplasma. Phys. Plasmas 17, 012106.CrossRefGoogle Scholar
D'Angelo, N. 2002 Electrostatic dust-cyclotron waves in plasmas with opposite polarity grains. Planet. Space Sci. 50, 375.Google Scholar
Dovner, P. O., Eriksson, A. I., Boström, R., and Holback, H. 1994 Freja multiprobe observations of electrostatic solitary structures. Geophys. Res. Lett. 21, 1827.CrossRefGoogle Scholar
Eliasson, B. and Shukla, P. K. 2004 Dust acoustic shock waves. Phys. Rev. E 69, 067401.Google Scholar
Ghosh, S. 2003 Dust acoustic shock waves in two-component dusty plasma. New J. Phys. 5, 142.Google Scholar
Ghosh, S., Ehsan, Z. and Murtaza, G. 2008 Dust acoustic shock wave in electronegative dusty plasma: roles of weak magnetic field. Phys. Plasmas 15, 023701.Google Scholar
Gupta, M. R., Sarkar, S. and Ghosh, S. 2003 Dust acoustic shock wave generation due to dust charge variation in a dusty plasma. Pramana 6, 1197.Google Scholar
Gupta, M. R., Sarkar, S., Ghosh, S., Debnath, M. and Khan, M. 2001 Effect of nonadiabaticity of dust charge variation on dust acoustic waves: generation of dust acoustic shock waves. Phys. Rev. E 63, 046406.CrossRefGoogle ScholarPubMed
Heinrich, J. R., Kim, S. H. and Merlino, R. L. 2009 Laboratory observations of self-excited dust acoustic shocks. Phys. Rev. Lett. 103, 115002.CrossRefGoogle ScholarPubMed
Kourakis, I., Sultana, S. and Verheest, F. 2012 Note on the single-shock solutions of the Korteweg–de Vries–Burgers equation. Astrophys. Space Sci. 338, 245.Google Scholar
Malfliet, W. 1992 Solitary wave solutions of nonlinear wave equations. Am. J. Phys. 60, 650.Google Scholar
Malfliet, W. 2004 The tanh method: a tool for solving certain classes of nonlinear evolution and wave equations. J. Comp. Appl. Math. 164, 529.Google Scholar
Mamun, A. A. 1998 Instability of obliquely propagating electrostatic solitary waves in a magnetized nonthermal dusty plasma. Phys. Scr. 58, 505.Google Scholar
Mamun, A. A., Alam, M. N., Das, A. K., Ahmed, Z. and Datta, T. K. 1998 Obliquely propagating electrostatic solitary structures in a hot magnetized dusty plasma. Phys. Scr. 58, 72.CrossRefGoogle Scholar
Mamun, A. A. and Cairns, R. A. 2009 Dust-acoustic shock waves due to strong correlation among arbitrarily charged dust. Phys. Rev. E 79, 055401.Google Scholar
Mamun, A. A., Cairns, R. A. and Shukla, P. K. 1996 Effects of vortex-like and non-thermal ion distributions on non-linear dust-acoustic waves. Phys. Plasmas 3, 2610.Google Scholar
Mamun, A. A. and Hassan, M. H. A. 2000 Effects of dust grain charge fluctuation on an obliquely propagating dust acoustic solitary potential in a magnetized dusty plasma. J. Plasma Phys. 63, 191.Google Scholar
Mamun, A. A. and Shukla, P. K. 2002 The role of dust charge fluctuations on nonlinear dust ion-acoustic waves. IEEE Trans. Plasma Sci. 30, 720.CrossRefGoogle Scholar
Merlino, R. L. and Goree, J. 2004 Dusty plasmas in the laboratory, industry, and space. Phys. Today 57 (7), 32.CrossRefGoogle Scholar
Merlino, R. L., Heinrich, J. R., Hyun, S. H. and Meyer, J. K. 2012 Nonlinear dust acoustic waves and shocks. Phys. Plasmas 19, 057301.Google Scholar
Misra, A. P., Adhikary, N. C. and Shukla, P. K. 2012 Ion-acoustic solitary waves and shocks in a collisional dusty negative-ion plasma. Phys. Rev. E 86, 056406.Google Scholar
Misra, A. P. and Bhowmik, C. 2007 Nonlinear wave modulation in a quantum magnetoplasma. Phys. Plasmas 14, 012309.Google Scholar
Misra, A. P. and Chowdhury, A. R. 2006 Dust-acoustic solitary waves in an inhomogeneous magnetized hot dusty plasma with dust charge fluctuations. Phys. Plasmas 13, 062307.Google Scholar
Nakamura, Y., Bailung, H. and Shukla, P. K. 1999 Observation of ion-acoustic shocks in a dusty plasma. Phys. Rev. Lett. 83, 1602.CrossRefGoogle Scholar
Rao, N. N., Shukla, P. K. and Yu, M. Y. 1990 Dust acoustic waves in dusty plasmas. Planet. Space Sci. 38, 543.Google Scholar
Shah, A. and Saeed, R. 2009 Ion acoustic shock waves in a relativistic electron–positron–ion plasmas. Phys. Lett. A 373, 4164.CrossRefGoogle Scholar
Shahmansouri, M. 2013a Influence of suprathermality on the obliquely propagating dust-acoustic solitary waves in a magnetized dusty plasma. Astrophys. Space Sci. 344, 153.Google Scholar
Shahmansouri, M. 2013b Dynamics of ion acoustic double layers in a magnetized two-population electrons plasma. Phys. Plasmas 20, 102104.Google Scholar
Shahmansouri, M. and Alinejad, H. 2012 Arbitrary amplitude dust ion acoustic solitary waves in a magnetized suprathermal dusty plasma. Phys. Plasmas 19, 123701.CrossRefGoogle Scholar
Shahmansouri, M. and Alinejad, H. 2013a Dust acoustic shock waves in a suprathermal dusty plasma with dust charge fluctuation. Astrophys. Space Sci. 343, 257.CrossRefGoogle Scholar
Shahmansouri, M. and Alinejad, H. 2013b Dust acoustic solitary waves in a magnetized electron depleted superthermal dusty plasma. Phys. Plasmas 20, 033704.Google Scholar
Shahmansouri, M. and Alinejad, H. 2013c Effect of electron non-extensivity on oblique propagation of arbitrary ion acoustic waves in a magnetized plasma. Astrophys. Space. Sci. 344, 463.Google Scholar
Shahmansouri, M. and Alinejad, H. 2013d Electrostatic wave structures in a magnetized superthermal plasma with two-temperature electrons. Phys. Plasmas 20, 082130.Google Scholar
Shahmansouri, M. and Mamun, A. A. 2013 Oblique ion acoustic shock waves in a magnetized plasma. Phys. Plasmas 20, 082122.Google Scholar
Shahmansouri, M. and Mamun, A. A. 2014 Formation of obliquely propagating dust-ion-acoustic shock waves due to dust charge fluctuation in magnetized nonthermal dusty plasma. Astrophys. Space Sci. doi:10.1007/s10509-013-1758-x.Google Scholar
Shahmansouri, M. and Tribeche, M. 2013 Dust acoustic shock waves in suprathermal dusty plasma in the presence of ion streaming with dust charge fluctuations. Astrophys. Space Sci. 343, 251.Google Scholar
Shukla, P. K. 2000 Dust ion-acoustic shocks and holes. Phys. Plasmas 7, 1044.Google Scholar
Shukla, P. K. and Eliasson, B. 2012 Nonlinear dynamics of large-amplitude dust acoustic shocks and solitary pulses in dusty plasmas. Phys Review E 86, 046402.Google Scholar
Shukla, P. K. and Mamun, A. A. 2001 Dust acoustic shocks in a strongly coupled dusty plasma. IEEE Trans. Plasma Sci. 29, 221.Google Scholar
Shukla, P. K. and Yu, M. Y. 1978 Exact solitary ion acoustic waves in a magnetoplasma. J. Math. Phys. 19, 2506.Google Scholar
Sultana, S., Kourakis, I. and Hellberg, M. A. 2012 Oblique propagation of arbitrary amplitude electron acoustic solitary waves in magnetized kappa-distributed plasmas. Plasma Phys. Control. Fusion 54, 105016.Google Scholar
Sultana, S., Kourakis, I., Saini, N. S. and Hellberg, M. A. 2010 Oblique electrostatic excitations in a magnetized plasma in the presence of excess superthermal electrons. Phys. Plasmas 17, 032310.Google Scholar
Sultana, S., Sarri, G. and Kourakis, I. 2012 Electrostatic shock dynamics in superthermal plasmas. Phys. Plasmas 19, 012310.Google Scholar
Teng, L. W., Chang, M. C., Tseng, Y. P. and Lin, I. 2009 Wave-particle dynamics of wave breaking in the self-excited dust acoustic wave. Phys. Rev. Lett. 103, 245005.Google Scholar
Tribeche, M. and Bacha, M. 2010 Nonlinear dust acoustic waves in a charge varying dusty plasma with suprathermal electrons. Phys. Plasmas 17, 073701.Google Scholar
Tribeche, M. and Bacha, M. 2012 Dust-acoustic shock waves in a charge varying electronegative magnetized dusty plasma with suprathermal electrons. Phys. Plasmas 19, 123706.Google Scholar
Washimi, H. and Taniuti, T. 1966 Propagation of ion-acoustic solitary waves of small amplitude. Phys. Rev. Lett. 17, 996.Google Scholar
Winske, D., Gary, S. P., Jones, M. E., Rosenberg, M., Chow, V. W. and Mendis, D. A. 1995 Ion heating in a dusty plasma due to the dust/ion acoustic instability. Geophys. Res. Lett. 22, 2069.Google Scholar
Zhang, L. P. and Xue., J. K. 2005a Shock wave in magnetized dusty plasmas with dust charging and nonthermal ion effects. Phys. Plasmas 12, 042304.Google Scholar
Zhang, L. P. and Xue, J. K. 2005b Effects of the dust charge variation and non-thermal ions on multi-dimensional dust acoustic solitary structures in magnetized dusty plasmas. Chaos Solitons Fractals 23, 543.CrossRefGoogle Scholar