Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T17:07:08.454Z Has data issue: false hasContentIssue false

Dusty magnetohydrodynamics in star-forming regions

Published online by Cambridge University Press:  22 January 2010

S. VAN LOO
Affiliation:
School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
S. A. E. G. FALLE
Affiliation:
Department of Applied Mathematical Sciences, University of Leeds, Leeds LS2 9JT, UK
T. W. HARTQUIST
Affiliation:
School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
O. HAVNES
Affiliation:
Department of Physics and Technology, University of Tromsø, 9037 Tromsø, Norway (ove.havnes@uit.no) Max-Planck-Institut für Extraterrestrische Physik, 85740 Garching, Germany University Center (UNIS), 9071 Longyearbyen, Svalbard, Norway
G. E. MORFILL
Affiliation:
Max-Planck-Institut für Extraterrestrische Physik, 85740 Garching, Germany

Abstract

Star formation occurs in dark molecular regions where the number density of hydrogen nuclei nH exceeds 104 cm−3 and the fractional ionization is 10−7 or less. Dust grains with sizes ranging up to tenths of microns and perhaps down to tens of nanometers contain just less than 1% of the mass. Recombination on grains is important for the removal of gas-phase ions, which are produced by cosmic rays penetrating the dark regions. Collisions of neutrals with charged grains contribute significantly to the coupling of the magnetic field to the neutral gas. Consequently, the dynamics of the grains must be included in the magnetohydrodynamic models of large-scale collapse, the evolution of waves and the structures of shocks important in star formation.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Trumpler, R. J. 1930 Lick. Obs. Bull. 14, 154.Google Scholar
[2]Stebbins, J., Huffer, C. H. and Whitford, A. E. 1934 Publ. Washburn Obs. 15 (V), 1.Google Scholar
[3]Stebbins, J., Huffer, C. H. and Whitford, A. E. 1939 Astrophys. J. 90, 209.CrossRefGoogle Scholar
[4]Spitzer, L. Jr 1941 Astrophys. J. 93, 369.CrossRefGoogle Scholar
[5]Hartquist, T. W., Pilipp, W. and Havnes, O. 1997 Astrophys. Space Sci. 246, 243.CrossRefGoogle Scholar
[6]Myers, P. C. 1990 Molecular cloud structure, motions, and evolution. In: Molecular Astrophysics – A Volume Honouring Alexander Dalgarno (ed. Hartquist, T. W.). Cambridge University Press, Cambridge, p. 328.CrossRefGoogle Scholar
[7]Oppenheimer, M. and Dalgarno, A. 1974 Astrophys. J. 192, 29.CrossRefGoogle Scholar
[8]Gail, H.-P. and Sedlmayr, E. 1975 Astron. Astrophys. 43, 17.Google Scholar
[9]Elmegreen, B. G. 1979 Astrophys. J. 232, 729.CrossRefGoogle Scholar
[10]Draine, B. T. and Sutin, B. 1987 Astrophys. J. 320, 803.CrossRefGoogle Scholar
[11]Umebayashi, T. and Nakano, T. 1990 Mon. Not. R. Astron. Soc. 243, 103.CrossRefGoogle Scholar
[12]Shukla, P. D. and Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. Institute of Physics, Bristol, UK.CrossRefGoogle Scholar
[13]Ward-Thompson, D., André, P., Crutcher, R., Johnstone, D., Onishi, T. and Wilson, C. 2007 An observational perspective of low-mass dense cores II: Evolution toward the initial mass function. In: Protostar and Protoplanet V (eds. Reiputh, B., Jewitt, D. and Keil, K.). University of Arizona Press, Tucson, AZ, p. 951.Google Scholar
[14]Van Loo, S., Falle, S. A. E. G., Hartquist, T. W. and Barker, A. J. 2008 Astron. Astrophys. 484, 275.CrossRefGoogle Scholar
[15]Baker, P. L. 1979 Astron. Astrophys. 75, 54.Google Scholar
[16]Nakano, T. and Umebayashi, T. 1980 Publ. Astron. Soc. Jpn 32, 405.Google Scholar
[17]Ciolek, G. E. and Mouschovias, T. Ch. 1995 Astrophys. J. 454, 194.CrossRefGoogle Scholar
[18]Tassis, K. and Mouschovias, T. Ch. 2007 Astrophys. J. 660, 370.CrossRefGoogle Scholar
[19]Rao, N. N., Shukla, P. K. and Yu, M. Y. 1990 Planet. Space Sci. 38, 543.CrossRefGoogle Scholar
[20]Pilipp, W., Morfill, G. E., Hartquist, T. W. and Havnes, O. 1987 Astrophys. J. 314, 341.CrossRefGoogle Scholar
[21]Kulsrud, R. M. and Pearce, W. A. 1969 Astrophys. J. 156, 445.CrossRefGoogle Scholar
[22]Draine, B. T. 1980 Astrophys. J. 241, 1021.CrossRefGoogle Scholar
[23]Draine, B. T., Roberge, W. G. and Dalgarno, A. 1983 Astrophys. J. 241, 1021.CrossRefGoogle Scholar
[24]Pilipp, W., Hartquist, T. W. and Havnes, O. 1990 Mon. Not. R. Astron. Soc. 243, 685.Google Scholar
[25]Guillet, V., Jones, A. P. and Pineau des Forêts, G. 2007 Astron. Astrophys. 476, 263.CrossRefGoogle Scholar
[26]Guillet, V., Jones, A. P. and Pineau des Forêts, G. 2009 Astron. Astrophys. 497, 145.CrossRefGoogle Scholar
[27]Pilipp, W. and Hartquist, T. W. 1994 Mon. Not. R. Astron. Soc. 267, 801.CrossRefGoogle Scholar
[28]Falle, S. A. E. G. and Komissarov, S. S. 2001 J. Plasma Phys. 65, 29.CrossRefGoogle Scholar
[29]Wardle, M. 1998 Mon. Not. R. Astron. Soc. 298, 507.CrossRefGoogle Scholar
[30]Chapmann, J. F. and Wardle, M. 2006 Mon. Not. R. Astron. Soc. 371, 513.CrossRefGoogle Scholar
[31]Falle, S. A. E. G. 2003 Mon. Not. R. Astron. Soc. 344, 1210.CrossRefGoogle Scholar
[32]Van Loo, S., Ashmore, I., Caselli, P., Falle, S. A. E. G. and Hartquist, T. W. 2009 Mon. Not. R. Astron. Soc. 395, 319.CrossRefGoogle Scholar
[33]Ashmore, I., Van Loo, S., Caselli, P., Falle, S. A. E. G. and Hartquist, T. W. in press, Astron. Astrophys.Google Scholar