Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T04:15:14.315Z Has data issue: false hasContentIssue false

Effects of toroidal field ripple on suprathermal ions in tokamak plasmas

Published online by Cambridge University Press:  13 March 2009

R. J. Goldston
Affiliation:
Plasma Physios Laboratory, Princeton University, Princeton, NJ 08544, USA
H. H. Towner
Affiliation:
Plasma Physios Laboratory, Princeton University, Princeton, NJ 08544, USA

Abstract

Analytic calculations of three important effects of toroidal field ripple on suprathermal ions in tokamak plasmas are presented. In the first process, collisional ripple-trapping, ions become trapped in local magnetic wells near their banana tips owing to pitch-angle scattering as they traverse the ripple on barely unripple-trapped orbits. In the second process, collisionless ripple-trapping, ions are captured (again near a banana tip) owing to their finite orbits, which carry them out into regions of higher ripple. In the third process, banana-drift diffusion, fast-ion banana orbits fail to close precisely, due to a ripple-induced ‘variable lingering period’ near the banana tips. These three mechanisms lead to substantial radial transport of banana-trapped, neutral-beam-injected ions when the quantity α*≡ε|τ|/Nqδ is of order unity or smaller.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Boozer, A. H. 1980 Phys. Fluids,22, 2188.Google Scholar
Callen, J. D.Colchin, R. J., Fowler, R. H., McAlees, D. G. & Rome, J. A. 1974 Proceedings of 5th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Tokyo, vol. 1, p. 645. IAEA.Google Scholar
Chapin, C. C. & Davidson, J. N. 1977 Bull. Am. Phys. Soc. 22, 1179.Google Scholar
Cordey, J. G. & Core, W.G. F. 1974 Phys. Fluids, 17, 1626.CrossRefGoogle Scholar
Cordey, J. G. 1976 Nucl. Fusion, 16, 499.CrossRefGoogle Scholar
Cordey, J. G., Core, W. G. F. & Gibson, A. 1979 9th European Conference on Controlled Fusion and Plasma Physics, Oxford, p. 165.Google Scholar
Davidson, J. N. 1976 Nucl. Fusion, 16, 731.CrossRefGoogle Scholar
Dei-Cas, R. & Marty, D. 1974 Report EUR-CEA-726.Google Scholar
Equipe, TFR 1978 Nucl. Fusion, 18, 1271.CrossRefGoogle Scholar
Fowler, R. H., Lee, D. K., Gaffney, P. W. & Rome, J. A. 1978 Report ORNL/TM 6293.Google Scholar
Goldston, R. J. & Jassby, D. L. 1976 3rd International Meeting on Theoretical and Experimental Aspects of Heating of Toroidal Plasmas, Grenoble, vol. 1, p. 1.Google Scholar
Haegi, M. & Bittone, E. 1979 Frascati Report 79.16.Google Scholar
Krommes, J. A. & Rutherford, P. H. 1974 Nucl. Fusion, 14, 695.CrossRefGoogle Scholar
Lister, G. L., Post, D. E. & Goldston, R. J. 1976 3rd Symposium on Plasma Heating in Toroidal Devices, Varenna, p. 303.Google Scholar
Mirin, A. A., Killeen, J., Marx, K. D. & Rensink, M. E. 1977 J. Comp. Phys. 23, 23.CrossRefGoogle Scholar
Rome, J. A., McAlees, D. G., Callen, J. D. & Fowler, R. H. 1976 Nucl. Fusion, 16, 55.CrossRefGoogle Scholar
Rutherford, P. H. & Goldston, R. J. 1977 Bull. Am. Phys. Soc. 22, 1106.Google Scholar
Stringer, T. E. 1972 Nucl. Fusion, 12, 689.CrossRefGoogle Scholar
Tani, K., Kishimoto, H. & Tamura, S. 1979 9th European Conference on Controlled Fusion and Plasma Physics, Oxford, p. 157.Google Scholar
Tsang, K. T. 1977 Nucl. Fusion, 17, 557.CrossRefGoogle Scholar