Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-13T22:00:16.986Z Has data issue: false hasContentIssue false

Electron acceleration from the interaction of three crossed parallel Alfvén waves

Published online by Cambridge University Press:  03 March 2022

K. Daiffallah*
Affiliation:
Centre de Recherche en Astronomie, Astrophysique et Géophysique CRAAG (Observatory of Algiers), Division Astrophysique Solaire, Route de l'Observatoire, BP 63, Bouzaréah, 16340Algiers, Algeria
*
Email address for correspondence: k.daiffallah@craag.dz

Abstract

We study the nonlinear interaction of three parallel Alfvén wave packets (AWPs) in an initially uniform plasma using 2.5-dimensional particle-in-cell (PIC) numerical simulations. We aim to help to explain the observation of suprathermal electrons by the collision of multiple Alfvén waves in regions where these waves are trapped like the IAR (Ionospheric Alfvén Resonator), Earth radiation belts or coronal magnetic loops. In the context of the acceleration by the parallel Alfvén waves interactions (APAWI) process that has been described by Mottez (Ann. Geophys., vol. 30, issue 1, 2012, pp. 81–95; J. Plasma Phys., vol. 81, issue 1, 2015, p. 325810104), the interaction of two parallel Alfvén waves (AWs) generates longitudinal density modulations and parallel electric fields at the APAWI crossing region that can accelerate particles effectively in the direction of the background magnetic field. Our simulations show that when a third parallel AWP of different initial position arrives at the APAWI crossing region, it gives rise to a strong parallel electron beam ($V \sim 5\text {--}7 V_{Te}$) at longitudinal cavity density gradients. We suggest that velocity drift from an outgoing AW generates interface waves in the transverse direction, which allows propagating waves to develop parallel electric fields by the phase mixing process when $k_{\perp }^{-1}$ of the wavy density gradient (oblique gradient) is in the range of the electron inertial length $c/\omega _{p0}$.

Type
Research Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bian, N.H. & Kontar, E.P. 2011 Parallel electric field amplification by phase mixing of Alfven waves. Astron. Astrophys. 527, A130.CrossRefGoogle Scholar
Bose, S., Carter, T., Hahn, M., Tripathi, S., Vincena, S. & Savin, D.W. 2019 Measured reduction in Alfvén wave energy propagating through longitudinal gradients scaled to match solar coronal holes. Astrophys. J. 882 (2), 183.CrossRefGoogle Scholar
Buti, B., Velli, M., Liewer, P.C., Goldstein, B.E. & Hada, T. 2000 Hybrid simulations of collapse of Alfvénic wave packets. Phys. Plasmas 7 (10), 39984003.CrossRefGoogle Scholar
Daiffallah, K. & Mottez, F. 2017 Electron acceleration and small-scale coherent structure formation by an Alfvén wave propagating in coronal interplume region. Astron. Nachr. 338 (7), 781789.CrossRefGoogle Scholar
Faganello, M. & Califano, F. 2017 Magnetized Kelvin–Helmholtz instability: theory and simulations in the earth's magnetosphere context. J. Plasma Phys. 83 (6), 535830601.CrossRefGoogle Scholar
Fletcher, L. & Hudson, H.S. 2008 Impulsive phase flare energy transport by large-scale Alfvén waves and the electron acceleration problem. Astrophys. J. 675 (2), 1645.CrossRefGoogle Scholar
Génot, V., Louarn, P. & Le Quéau, D. 1999 A study of the propagation of Alfvén waves in the auroral density cavities. J. Geophys. Res. 104 (A10), 22649.CrossRefGoogle Scholar
Génot, V., Louarn, P. & Mottez, F. 2000 Electron acceleration by Alfvén waves in density cavities. J. Geophys. Res. 105 (A12), 27611.CrossRefGoogle Scholar
Génot, V., Louarn, P. & Mottez, F. 2004 Alfvén wave interaction with inhomogeneous plasmas: acceleration and energy cascade towards small-scales. Ann. Geophys. 22 (6), 2081.CrossRefGoogle Scholar
Goertz, C.K. 1985 Auroral arc formation: kinetic and MHD effects. Space Sci. Rev. 42 (3–4), 499.CrossRefGoogle Scholar
Hallinan, T.J. & Davis, T.N. 1970 Small-scale auroral arc distortions. Planet. Space Sci. 18 (12), 17351737.CrossRefGoogle Scholar
Heyvaerts, J. & Priest, E.R. 1983 Coronal heating by phase-mixed shear Alfven waves. Astron. Astrophys. 117, 220234.Google Scholar
Howes, G.G., McCubbin, A.J. & Klein, K.G. 2018 Spatially localized particle energization by Landau damping in current sheets produced by strong Alfvén wave collisions. J. Plasma Phys. 84 (1), 905840105.CrossRefGoogle Scholar
Howes, G.G. & Nielson, K.D. 2013 Alfvén wave collisions, the fundamental building block of plasma turbulence. I. Asymptotic solution. Phys. Plasmas 20 (7), 072302.CrossRefGoogle Scholar
Karlsson, T., Andersson, L., Gillies, D.M., Lynch, K., Marghitu, O., Partamies, N., Sivadas, N. & Wu, J. 2020 Quiet, discrete auroral arcs–observations. Space Sci. Rev. 216 (1), 16.CrossRefGoogle Scholar
Khomenko, E. & Cally, P.S. 2012 Numerical simulations of conversion to Alfvén waves in sunspots. Astrophys. J. 746 (1), 68.CrossRefGoogle Scholar
Lysak, R.L. & Song, Y. 2008 Propagation of kinetic Alfvén waves in the ionospheric Alfvén resonator in the presence of density cavities. Geophys. Res. Lett. 35 (20), L20101.CrossRefGoogle Scholar
Moore, R.L., Musielak, Z.E., Suess, S.T. & An, C.-H. 1991 Alfvén wave trapping, network microflaring, and heating in solar coronal holes. Astrophys. J. 378, 347.CrossRefGoogle Scholar
Mottez, F. 2001 Instabilities and formation of coherent structures. Astrophys. Space Sci. 277, 59.CrossRefGoogle Scholar
Mottez, F. 2008 A guiding centre direct implicit scheme for magnetized plasma simulations. J. Comput. Phys. 227 (6), 3260.CrossRefGoogle Scholar
Mottez, F. 2012 Non-propagating electric and density structures formed through non-linear interaction of Alfvén waves. Ann. Geophys. 30 (1), 8195.CrossRefGoogle Scholar
Mottez, F. 2015 Plasma acceleration by the interaction of parallel propagating Alfvén waves. J. Plasma Phys. 81 (1), 325810104.CrossRefGoogle Scholar
Mottez, F., Adam, J.C. & Heron, A. 1998 A new guiding centre PIC scheme for electromagnetic highly magnetized plasma simulation. Comput. Phys. Commun. 113 (2–3), 109.CrossRefGoogle Scholar
Mottez, F. & Génot, V. 2011 Electron acceleration by an Alfvénic pulse propagating in an auroral plasma cavity. J. Geophys. Res. 116, A00K15.Google Scholar
Musielak, Z.E., Fontenla, J.M. & Moore, R.L. 1992 Klein-Gordon equation and reflection of Alfvén waves in nonuniform media. Phys. Fluids B 4 (1), 13.CrossRefGoogle Scholar
Nielson, K.D., Howes, G.G. & Dorland, W. 2013 Alfvén wave collisions, the fundamental building block of plasma turbulence. II. Numerical solution. Phys. Plasmas 20 (7), 072303.CrossRefGoogle Scholar
Pezzi, O., Parashar, T.N., Servidio, S., Valentini, F., Vasconez, C.L., Yang, Y., Malara, F., Matthaeus, W.H. & Veltri, P. 2017 Colliding Alfvénic wave packets in magnetohydrodynamics, Hall and kinetic simulations. J. Plasma Phys. 83 (1), 705830108.CrossRefGoogle Scholar
Tsiklauri, D. 2007 A minimal model of parallel electric field generation in a transversely inhomogeneous plasma. New J. Phys. 9 (8), 262.CrossRefGoogle Scholar
Tsiklauri, D. 2011 Particle acceleration by circularly and elliptically polarised dispersive Alfven waves in a transversely inhomogeneous plasma in the inertial and kinetic regimes. Phys. Plasmas 18 (9), 092903.CrossRefGoogle Scholar
Tsiklauri, D. 2012 Three dimensional particle-in-cell simulation of particle acceleration by circularly polarised inertial Alfven waves in a transversely inhomogeneous plasma. Phys. Plasmas 19 (8), 082903.CrossRefGoogle Scholar
Tsiklauri, D. 2016 Collisionless, phase-mixed, dispersive, Gaussian Alfven pulse in transversely inhomogeneous plasma. Phys. Plasmas 23 (12), 122906.CrossRefGoogle Scholar
Tsiklauri, D. & Haruki, T. 2008 Physics of collisionless phase mixing. Phys. Plasmas 15 (11), 112902.CrossRefGoogle Scholar
Verniero, J.L. & Howes, G.G. 2018 The Alfvénic nature of energy transfer mediation in localized, strongly nonlinear Alfvén wavepacket collisions. J. Plasma Phys. 84 (1), 905840109.CrossRefGoogle Scholar
Wu, D.J. & Fang, C. 2003 Coronal Plume Heating and Kinetic Dissipation of Kinetic Alfvén Waves. Astrophys. J. 596 (1), 656662.CrossRefGoogle Scholar
Xiang, L., Chen, L. & Wu, D.J. 2019 Resonant mode conversion of Alfvén waves to kinetic Alfvén waves in an inhomogeneous plasma. Astrophys. J. 881 (1), 61.CrossRefGoogle Scholar
Zhao, J.S., Wu, D.J. & Lu, J.Y. 2011 A nonlocal wave-wave interaction among Alfvén waves in an intermediate-$\beta$ plasma. Phys. Plasmas 18 (3), 032903.CrossRefGoogle Scholar