Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-29T03:51:12.987Z Has data issue: false hasContentIssue false

Electrostatic rogue waves in a plasma with a relativistic electron beam

Published online by Cambridge University Press:  03 June 2013

F. BENCHRIET
Affiliation:
Theoretical Physics Laboratory, Faculty of Physics USTHB, B.P. 32 Bab Ezzour, 16079 Algiers, Algeria Department of Physics, Faculty of Science, Port Said University, Port Said, Egypt (samireltantawy@yahoo.com)
S. A. EL-TANTAWY
Affiliation:
Department of Physics, Faculty of Science, Port Said University, Port Said, Egypt (samireltantawy@yahoo.com)
W. M. MOSLEM
Affiliation:
Department of Physics, Faculty of Science, Port Said University, Port Said, Egypt (samireltantawy@yahoo.com) International Centre for Advanced Studies in Physical Sciences, Faculty of Physics and Astronomy, Ruhr University Bochum, D-44780 Bochum, Germany Centre for Theoretical Physics, The British University in Egypt (BUE), El-Shorouk City, Cairo, Egypt
M. DJEBLI
Affiliation:
Theoretical Physics Laboratory, Faculty of Physics USTHB, B.P. 32 Bab Ezzour, 16079 Algiers, Algeria

Abstract

The properties of nonlinear electrostatic acoustic rogue waves in a three-component plasma composed of electron, positron, and relativistic electron beam are investigated. The reductive perturbation method is used to obtain a Korteweg–de Vries equation. The dynamics of the modulationally unstable wave packets described by the Korteweg–de Vries equation gives rise to the formation of rogue pulses that is described by a nonlinear Schrödinger equation for small wave number. The effects of physical parameters on the profile of rogue waves are investigated numerically. The electrostatic rogue waves, as predicted here, may be associated with the nonlinear structures caused by the interaction of relativistic jets with plasma medium, such as in the active galactic nuclei and in the magnetosphere of collapsing stars.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdelsalam, U. M., Moslem, W. M., Khater, A. H. and Shukla, P. K. 2011 Phys. Plasmas 18, 092305.CrossRefGoogle Scholar
Bailung, H., Sharma, S. K. and Nakamura, Y. 2011 Phys. Rev. Lett. 107, 255005.CrossRefGoogle Scholar
Bludov, Yu. V., Konotop, V. V. and Akhmediev, N. 2009 Phys. Rev. A 80, 033610.CrossRefGoogle Scholar
Bludov, Yu. V., Konotop, V. V. and Akhmediev, N. 2010 Eur. Phys. J. Spec. Top. 185, 169.CrossRefGoogle Scholar
El-Tantawy, S. A., El-Bedwehy, N. A. and Moslem, W. M. 2011 Phys. Plasmas 18, 052113.CrossRefGoogle Scholar
El-Labany, S. K., El-Bedwehy, N. A. and AbdEl-Razek, H. N. 2007 Phys. Plasmas 14, 103704.CrossRefGoogle Scholar
El-Labany, S. K., Moslem, W. M., El-Bedwehy, N. A., Sabry, R. and El-Razek, H. N. Abd 2011 Astrophys. Space Sci. 3, 923.Google Scholar
El-Tantawy, S. A., Tribeche, M. and Moslem, W. M. 2012 Phys. Plasmas 19, 032104.CrossRefGoogle Scholar
Ganshin, A. N., Emov, V. B., Kolmakov, G. V., Mezhov-Deglin, L. P. and McClintock, P. V. E. 2008 Phys. Rev. Lett. 101, 065303.CrossRefGoogle Scholar
Kharif, C., Pelinovsky, E. and Slunyaev, A. 2009 Rogue Waves in the Ocean. Heidelberg: Springer.Google Scholar
Kibler, B., Fatome, J., Finot, C., Millot, G., Dias, F., Genty, G., Akhmedieve, N. and Dudley, J. M. 2010 Phys. Lett. 10, 1038.Google Scholar
Lareder, D., Passot, T., Sulem, P. L. and Sanchez-Arriag, G. 2011 Phys. Lett. A 375, 3997.CrossRefGoogle Scholar
Mahmood, S. and Ur-Rehman, H. 2009 Phys. Lett. A 373, 2255.CrossRefGoogle Scholar
Maier, S. A. 2007 Plasmonics: Fundamentals and Applications. New York: Springer.CrossRefGoogle Scholar
Moslem, W. M. 2011 Phys. Plasmas 18, 032301; Sabry, R., Moslem, W. M. and Shukla, P. K. 2012 Phys. Rev. E 86, 036408.CrossRefGoogle Scholar
Moslem, W. M., Bencheriet, F., Sabry, R. and Djebli, M. 2012 Phys. Plasmas 19, 042105.CrossRefGoogle Scholar
Moslem, W. M., Sabry, R., Abdelsalam, U. M., Kourakis, I. and Shukla, P. K. 2009 New J. Phys. 11, 033028.CrossRefGoogle Scholar
Moslem, W. M., Sabry, R., El-Labany, S. K. and Shukla, P. K. 2011a Phys. Rev. E 84, 066402.Google Scholar
Moslem, W. M., Shukla, P. K. and Eliason, B. 2011a Europhys. Lett. 96, 25002.CrossRefGoogle Scholar
Neubert, T. and Gilchrist, B. E. 2004 Adv. Space Res. 34, 2409.CrossRefGoogle Scholar
Solli, D. R., Ropers, C., Koonath, P. and Jalali, B. 2007 Nature 450, 1054.CrossRefGoogle Scholar
Stenflo, L. and Marklund, M. 2010 J. Plasma Phys. 76, 293.CrossRefGoogle Scholar
Vasilieva, T. M. and Bayandina, D. V. 2010 Instrum. Exp. Tech. 53, 288.CrossRefGoogle Scholar
Washimi, H. and Taniuti, T. 1966 Phys. Rev. Lett. 17, 996.CrossRefGoogle Scholar