Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T11:15:54.182Z Has data issue: false hasContentIssue false

Evolution of complex amplitudes ratio in weakly anisotropic plasma

Published online by Cambridge University Press:  10 November 2009

YURY A. KRAVTSOV
Affiliation:
Space Research Institute, Profsoyuznaya St. 82/34, Moscow 117997, Russia Institute of Physics, Maritime University of Szczecin, 1–2 Waly Chrobrego Szczecin 70–500, Poland (b.bieg@am.szczecin.pl)
BOHDAN BIEG
Affiliation:
Institute of Physics, Maritime University of Szczecin, 1–2 Waly Chrobrego Szczecin 70–500, Poland (b.bieg@am.szczecin.pl)

Abstract

The equation for evolution of the complex amplitudes ratio (CAR) ζ = Ey/Ex in weakly anisotropic inhomogeneous media is derived on the basis of quasi-isotropic approximation (QIA) of the geometrical optics method. This equation is convenient for the description of electromagnetic wave polarization in magnetized plasma of thermonuclear reactors like the ITER. The equation for the CAR is in agreement with other approaches, analyzing polarization evolution in weakly anisotropic media, in particular, with the equation for complex polarization angle and, via QIA equations, with the Segre equation for Stokes vector evolution. Simple analytical solutions for the CAR, which relates to normal mode propagation in homogeneous and weakly inhomogeneous plasma, are obtained. Besides, the equation for the CAR is solved numerically to describe the phenomenon of normal wave conversion in magnetized plasma in the vicinity of the orthogonality point between the ray and the static magnetic field. In distinction to the line-averaged measurements in traditional plasma polarimetry, the phenomenon of normal wave conversion opens the way for measuring the local plasma parameters near the orthogonality point.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Huard, S. 1997 Polarization of Light. Paris: John Willey/Masson.Google Scholar
[2]Born, M. and Wolf, E.Principles of Optics. Oxford: Pergamon.Google Scholar
[3]Kravtsov, Yu A. 1969 Sov. Phys.- Doklady 13, 1125.Google Scholar
[4]Kravtsov, Yu A., Naida, O. N. and Fuki, A. A. 1996 Phys.-Uspekhi 39, 129.CrossRefGoogle Scholar
[5]Fuki, A. A., Kravtsov, Yu A. and Naida, O. N. 1997 Geometrical Optics of Weakly Anisotropic Media. London and New York: Gordon & Breach.Google Scholar
[6]Kravtsov, Yu A. and Orlov, Yu I. 1990 Geometrical Optics of Inhomogeneous Media. Berlin: Springer.CrossRefGoogle Scholar
[7]Kravtsov, Yu A. 2005 Geometrical Optics in Engineering Physics. Harrow, Middlesex, UK: Alpha Science InternationalGoogle Scholar
[8]Kravtsov, Yu A., Bieg, B. and Bliokh, K. Yu 2007 J. Opt. Soc. Am. A 24, 10 3388.CrossRefGoogle Scholar
[9]Czyz, Z. H., Bieg, B. and Kravtsov, Yu A. 2007 Phys. Lett. A 368, 101.CrossRefGoogle Scholar
[10]Popov, M. M. 1969 Vest. Leningr. Univ. (Bull. Leningr. Univ.) 22, 44.Google Scholar
[11]Babich, V. M. and Buldyrev, V. S. 1990 Short-Wavelength Diffraction Theory: Asymptotic Methods. Berlin: Springer. (Original Russian edition in 1972 by Nauka, Moscow).Google Scholar
[12]Cerveny, V. 2001 Seismic Ray Theory. Cambridge, New York, Melbourne: Cambridge University Press.CrossRefGoogle Scholar
[13]Rytov, S. M. 1938 Dokl. Akad. Nauk SSSR 18, 263. (English translation in: Topological Phase in Quantum Theory, ed. B.I. Markovski and S.I. Vinitsky, 1989, World Scientific, Singapore).Google Scholar
[14]Segre, S. E. 1999 Plasma Phys. Control. Fusion 41, R57.CrossRefGoogle Scholar
[15]Ginzburg, V. I. 1970 Propagation of Electromagnetic waves in Plasma. New York: Gordon & Breach.Google Scholar
[16]Kravtsov, Yu A. and Naida, O. N. 1976 Sov. Phys.-JETP 44, 122.Google Scholar
[17]Kravtsov, Yu A. and Naida, O. N. 2000 J.Tech. Phys. 41, 155.Google Scholar
[18]Cohen, M. H. 1960 Astrophys. J. 131, 664.CrossRefGoogle Scholar
[19]Zheleznyakov, V. V. and Zlotnik, E. Ya. 1964 Soviet Astron. J. AJ 7, 485.Google Scholar
[20]Kravtsov, Yu A. and Bieg, B. 2008 Proc. SPIE 7141, 71410K-1, doi: 10.1117/12.822365.Google Scholar
[21]Kravtsov, Yu A. and Bieg, B. 2009 Plasma Phys. Control. Fusion (submitted).Google Scholar