Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T03:48:53.592Z Has data issue: false hasContentIssue false

Extraordinary and upper-hybrid waves in spin quantum magnetoplasmas with vacuum polarization effect

Published online by Cambridge University Press:  13 July 2021

Jun Zhu*
Affiliation:
School of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, PR China
Xiaoshan Liu
Affiliation:
School of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, PR China
Yuee Luo
Affiliation:
Department of Mechanical and Electronic Engineering, Jingdezhen University, Jingdezhen 333000, PR China
*
Email address for correspondence: zhujun@sxu.edu.cn

Abstract

The propagation of extraordinary and upper-hybrid waves in spin quantum magnetoplasmas with vacuum polarization effect is investigated. Based on the quantum magnetohydrodynamics model including Bohm potential, arbitrary relativistic degeneracy pressure and spin force, and Maxwell's equations modified by the spin current and vacuum polarization current, the dispersion relations of extraordinary and upper-hybrid waves are derived. The analytical and numerical results show that quantum effects (Bohm potential, degeneracy pressure and spin magnetization energy) and the vacuum polarization effect modify the propagation of the extraordinary wave. Under the action of a strong magnetic field, the plasma frequency is obviously increased by the vacuum polarization effect.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andreev, P. A. 2015 Separated spin-up and spin-down quantum hydrodynamics of degenerated electrons: spin-electron acoustic wave appearance. Phys. Rev. E 91 (3), 033111.CrossRefGoogle ScholarPubMed
Andreev, P. A. 2017 Extraordinary spin-electron acoustic wave. Phys. Plasmas 24 (2), 022123.CrossRefGoogle Scholar
Bohm, D. 1952 A suggested interpretation of the quantum theory in term of hidden variables. Phys. Rev. 85 (2), 166193.CrossRefGoogle Scholar
Brodin, G. & Marklund, M. 2007 Spin magnetohydrodynamics. New J. Phys. 9, 277.CrossRefGoogle Scholar
Brodin, G., Marklund, M., Eliasson, B. & Shukla, P. K. 2007 Quantum-electrodynamical photon splitting in magnetized nonlinear pair plasmas. Phys. Rev. Lett. 98 (12), 125001.CrossRefGoogle ScholarPubMed
El-Shamy, E. F. 2015 Nonlinear ion-acoustic cnoidal waves in a dense relativistic degenerate magnetoplasma. Phys. Rev. E 91 (3), 033105.CrossRefGoogle Scholar
Gedalin, M., Merose, D. B. & Gruman, E. 1998 Long waves in a relativistic pair in a strong magnetic field. Phys. Rev. E 57 (3), 33993410.CrossRefGoogle Scholar
Goldreich, P. & Julian, W. H. 1969 Pulsar electrodynamics. Astrophys. J. 157, 868880.CrossRefGoogle Scholar
Haas, F. 2011 An introduction to quantum plasmas. Braz. J. Phys. 41, 349363.CrossRefGoogle Scholar
Haas, F., Manfredi, G. & Feix, M. 2000 Multistream model for quantum plasmas. Phys. Rev. E 62 (2), 27632772.CrossRefGoogle ScholarPubMed
Harding, A. K. & Lai, D. 2006 Physics of strongly magnetized neutron stars. Rep. Prog. Phys. 69, 26312708.CrossRefGoogle Scholar
Heisenberg, W. & Euler, H. 1936 Folgerungen aus der Diracschen Theorie des Positrons. Z. Phys. 98 (11), 714732.CrossRefGoogle Scholar
Iqbal, Z., Ayub, M., Shah, H. A. & Murtaza, G. 2019 a Energy behavior of spin electron cyclotron wave in a spin polarized plasma. Phys. Lett. A 383, 29032907.CrossRefGoogle Scholar
Iqbal, Z., Khan, I. A. & Murtaza, G. 2018 a On the upper hybrid wave instability in a spin polarized degenerate plasma. Phys. Plasmas 25, 062121.CrossRefGoogle Scholar
Iqbal, Z., Khanum, U. & Murtaza, G. 2018 b Lower hybrid wave instability in a spin–polarized degenerate plasma. Contrib. Plasma Phys. 59 (3), 284291.CrossRefGoogle Scholar
Iqbal, Z., Younas, M., Khan, I. A. & Murtaza, G. 2019 b Spin magnetoacoustic wave. Phys. Plasmas 26, 112101.CrossRefGoogle Scholar
Lundin, J., Stenflo, L., Brodin, G., Marklund, M. & Shukla, P. K. 2007 Circularly polarized waves in a plasma with vacuum polarization effects. Phys. Plasmas 14 (6), 064503.CrossRefGoogle Scholar
Manfredi, G. 2005 How to model quantum plasmas. Fields Institute Communications 46.CrossRefGoogle Scholar
Marklund, M. & Brodin, G. 2007 Dynamics of spin-$\frac {1}2$ quantum plasmas. Phys. Rev. Lett. 98 (2), 025001.CrossRefGoogle ScholarPubMed
Marklund, M. & Shukla, P. K. 2006 Nonlinear collective effects in photon-photon and photon-plasma interactions. Rev. Mod. Phys. 78 (2), 591640.CrossRefGoogle Scholar
Markowich, P. A., Ringhofer, C. & Schmeiser, C. 1990 Semiconductor Equations. Springer.CrossRefGoogle Scholar
Maroof, R., Ali, S., Mushtaq, A. & Qamar, A. 2015 Magnetohydrodynamic waves with relativistic electrons and positrons in degenerate spin-1/2 astrophysical plasmas. Phys. Plasmas 22 (11), 112102.CrossRefGoogle Scholar
Mushtaq, A., Maroof, R., Ahmad, Z. & Qamar, A. 2012 Magnetohydrodynamic spin waves in degenerate electron-positron-ion plasmas. Phys. Plasmas 19 (5), 052101.CrossRefGoogle Scholar
Shen, B., Yu, M. Y. & Wang, X. 2003 Photon–photon scattering in a plasma channel. Phys. Plasmas 10 (11), 45704571.CrossRefGoogle Scholar
Shukla, P. K. 2006 A new dust mode in quantum plasmas. Phys. Lett. A 352, 242243.CrossRefGoogle Scholar
Shukla, P. K. & Eliasson, B. 2006 Formation and dynamics of dark solitons and vortices in quantum electron plasmas. Phys. Rev. Lett. 96 (24), 245001.CrossRefGoogle ScholarPubMed
Shukla, P. K. & Eliasson, B. 2011 Colloquium: nonlinear collective interactions in quantum plasmas with degenerate electron fluids. Rev. Mod. Phys. 83 (3), 885906.CrossRefGoogle Scholar
Shukla, P. K. & Stenflo, L. 2008 Dispersion relations for electromagnetic waves in a dense magnetized plasma. J. Plasma Phys. 74 (6), 719723.CrossRefGoogle Scholar
Stenflo, L., Brodin, G., Marklund, M. & Shukla, P. K. 2005 A new electromagnetic wave in a pair plasma. J. Plasma Phys. 71 (5), 709713.CrossRefGoogle Scholar