Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T21:55:07.413Z Has data issue: false hasContentIssue false

Fluid simulations of three-dimensional reconnection that capture the lower-hybrid drift instability

Published online by Cambridge University Press:  19 February 2021

F. Allmann-Rahn*
Affiliation:
Institute for Theoretical Physics I, Ruhr University Bochum, 44801 Bochum, Germany
S. Lautenbach
Affiliation:
Institute for Theoretical Physics I, Ruhr University Bochum, 44801 Bochum, Germany
R. Grauer
Affiliation:
Institute for Theoretical Physics I, Ruhr University Bochum, 44801 Bochum, Germany
R. D. Sydora
Affiliation:
Department of Physics, University of Alberta, Edmonton, AlbertaT6G 2E1, Canada
*
Email address for correspondence: far@tp1.rub.de

Abstract

Fluid models that approximate kinetic effects have received attention recently in the modelling of large-scale plasmas such as planetary magnetospheres. In three-dimensional reconnection, both reconnection itself and current sheet instabilities need to be represented appropriately. We show that a heat flux closure based on pressure gradients enables a 10-moment fluid model to capture key properties of the lower-hybrid drift instability (LHDI) within a reconnection simulation. Characteristics of the instability are examined with kinetic and fluid continuum models, and its role in the three-dimensional reconnection simulation is analysed. The saturation level of the electromagnetic LHDI is higher than expected, which leads to strong kinking of the current sheet. Therefore, the magnitude of the initial perturbation has significant impact on the resulting turbulence.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allmann-Rahn, F., Trost, T. & Grauer, R. 2018 Temperature gradient driven heat flux closure in fluid simulations of collisionless reconnection. J. Plasma Phys. 84 (3), 905840307.CrossRefGoogle Scholar
Baumjohann, W., Roux, A., Le Contel, O., Nakamura, R., Birn, J., Hoshino, M., Lui, A. T. Y., Owen, C. J., Sauvaud, J.-A., Vaivads, A., et al. 2007 Dynamics of thin current sheets: cluster observations. Ann. Geophys. 25 (6), 13651389.CrossRefGoogle Scholar
Birn, J., Drake, J. F., Shay, M. A., Rogers, B. N., Denton, R. E., Hesse, M., Kuznetsova, M., Ma, Z. W., Bhattacharjee, A., Otto, A., et al. 2001 Geospace environmental modeling (GEM) magnetic reconnection challenge. J. Geophys. Res. 106 (A3), 37153719.CrossRefGoogle Scholar
Braginskii, S. I. 1965 Transport processes in a plasma. Rev. Plasma Phys. 1, 205.Google Scholar
Daughton, W. 2003 Electromagnetic properties of the lower-hybrid drift instability in a thin current sheet. Phys. Plasmas 10 (8), 31033119.CrossRefGoogle Scholar
Davidson, R. C., Gladd, N. T., Wu, C. S. & Huba, J. D. 1977 Effects of finite plasma beta on the lower-hybrid-drift instability. Phys. Fluids 20 (2), 301310.CrossRefGoogle Scholar
Dong, C., Wang, L., Hakim, A., Bhattacharjee, A., Slavin, J. A., DiBraccio, G. A. & Germaschewski, K. 2019 Global ten-moment multifluid simulations of the solar wind interaction with mercury: from the planetary conducting core to the dynamic magnetosphere. Geophys. Res. Lett. 46 (21), 1158411596.CrossRefGoogle Scholar
Drake, J. F., Swisdak, M., Schoeffler, K. M., Rogers, B. N. & Kobayashi, S. 2006 Formation of secondary islands during magnetic reconnection. Geophys. Res. Lett. 33 (13), L13105.CrossRefGoogle Scholar
Egedal, J., Le, A. & Daughton, W. 2013 A review of pressure anisotropy caused by electron trapping in collisionless plasma, and its implications for magnetic reconnection. Phys. Plasmas 20, 061201.CrossRefGoogle Scholar
Egedal, J., Ng, J., Le, A., Daughton, W., Wetherton, B., Dorelli, J., Gershman, D. & Rager, A. 2019 Pressure tensor elements breaking the frozen-in law during reconnection in earth's magnetotail. Phys. Rev. Lett. 123, 225101.CrossRefGoogle ScholarPubMed
Filbet, F., Sonnendrücker, E. & Bertrand, P. 2001 Conservative numerical schemes for the vlasov equation. J. Comput. Phys. 172 (1), 166187.CrossRefGoogle Scholar
Fujimoto, K. & Sydora, R. D. 2012 Plasmoid-induced turbulence in collisionless magnetic reconnection. Phys. Rev. Lett. 109, 265004.CrossRefGoogle ScholarPubMed
Fujimoto, K. & Sydora, R. D. 2017 Linear theory of the current sheet shear instability. J. Geophys. Res. 122 (5), 54185430.CrossRefGoogle Scholar
Hammett, G. W., Dorland, W. & Perkins, F. W. 1992 Fluid models of phase mixing, landau damping, and nonlinear gyrokinetic dynamics. Phys. Fluids B 4 (7), 20522061.CrossRefGoogle Scholar
Hammett, G. W. & Perkins, F. W. 1990 Fluid moment models for landau damping with application to the ion-temperature-gradient instability. Phys. Rev. Lett. 64, 30193022.CrossRefGoogle ScholarPubMed
Harris, E. G. 1962 On a plasma sheath separating regions of oppositely directed magnetic field. Il Nuovo Cimento (1955–1965) 23 (1), 115121.CrossRefGoogle Scholar
Hasegawa, H., Kitamura, N., Saito, Y., Nagai, T., Shinohara, I., Yokota, S., Pollock, C. J., Giles, B. L., Dorelli, J. C., Gershman, D. J., et al. 2016 Decay of mesoscale flux transfer events during quasi-continuous spatially extended reconnection at the magnetopause. Geophys. Res. Lett. 43 (10), 47554762.CrossRefGoogle Scholar
Hesse, M., Winske, D. & Kuznetsova, M. M. 1995 Hybrid modeling of collisionless reconnection in two-dimensional current sheets: simulations. J. Geophys. Res. 100 (A11), 2181521825.CrossRefGoogle Scholar
Hwang, K.-J., Sibeck, D. G., Giles, B. L., Pollock, C. J., Gershman, D., Avanov, L., Paterson, W. R., Dorelli, J. C., Ergun, R. E., Russell, C. T., et al. 2016 The substructure of a flux transfer event observed by the mms spacecraft. Geophys. Res. Lett. 43 (18), 94349443.CrossRefGoogle Scholar
Innocenti, M. E., Norgren, C., Newman, D., Goldman, M., Markidis, S. & Lapenta, G. 2016 Study of electric and magnetic field fluctuations from lower hybrid drift instability waves in the terrestrial magnetotail with the fully kinetic, semi-implicit, adaptive multi level multi domain method. Phys. Plasmas 23 (5), 052902.CrossRefGoogle Scholar
Johnson, E. A. & Rossmanith, J. A. 2010 Ten-moment two-fluid plasma model agrees well with PIC/Vlasov in GEM problem. arXiv:1010.0746.Google Scholar
Jülich Supercomputing Centre 2019 JUWELS: modular tier-0/1 supercomputer at the Jülich Supercomputing Centre. J. Large-Scale Res. Facilities 5 (A135).Google Scholar
Karimabadi, H., Daughton, W. & Scudder, J. 2007 Multi-scale structure of the electron diffusion region. Geophys. Res. Lett. 34 (13), L13104.CrossRefGoogle Scholar
Klimas, A., Hesse, M. & Zenitani, S. 2008 Particle-in-cell simulation of collisionless reconnection with open outflow boundaries. Phys. Plasmas 15 (8), 082102.CrossRefGoogle Scholar
Kurganov, A. & Levy, D. 2000 A third-order semidiscrete central scheme for conservation laws and convection-diffusion equations. SIAM J. Sci. Comput. 22 (4), 14611488.CrossRefGoogle Scholar
Lapenta, G. & Brackbill, J. U. 2002 Nonlinear evolution of the lower hybrid drift instability: current sheet thinning and kinking. Phys. Plasmas 9 (5), 15441554.CrossRefGoogle Scholar
Lapenta, G., Brackbill, J. U. & Daughton, W. S. 2003 The unexpected role of the lower hybrid drift instability in magnetic reconnection in three dimensions. Phys. Plasmas 10 (5), 15771587.CrossRefGoogle Scholar
Le, A., Daughton, W., Chen, L.-J. & Egedal, J. 2017 Enhanced electron mixing and heating in 3-d asymmetric reconnection at the earth's magnetopause. Geophys. Res. Lett. 44 (5), 20962104.CrossRefGoogle Scholar
Le, A., Daughton, W., Karimabadi, H. & Egedal, J. 2016 Hybrid simulations of magnetic reconnection with kinetic ions and fluid electron pressure anisotropy. Phys. Plasmas 23 (3), 032114.CrossRefGoogle Scholar
Le, A., Daughton, W., Ohia, O., Chen, L.-J., Liu, Y.-H., Wang, S., Nystrom, W. D. & Bird, R. 2018 Drift turbulence, particle transport, and anomalous dissipation at the reconnecting magnetopause. Phys. Plasmas 25 (6), 062103.CrossRefGoogle Scholar
Le, A., Egedal, J., Daughton, W., Fox, W. & Katz, N. 2009 The equations of state for collisionless guide-field reconnection. Phys. Rev. Lett. 102, 085001.CrossRefGoogle ScholarPubMed
Le, A., Stanier, A., Daughton, W., Ng, J., Egedal, J., Nystrom, W. D. & Bird, R. 2019 Three-dimensional stability of current sheets supported by electron pressure anisotropy. Phys. Plasmas 26 (10), 102114.CrossRefGoogle Scholar
Nakamura, T. K. M., Genestreti, K. J., Liu, Y.-H., Nakamura, R., Teh, W.-L., Hasegawa, H., Daughton, W., Hesse, M., Torbert, R. B., Burch, J. L., et al. 2018 a Measurement of the magnetic reconnection rate in the earth's magnetotail. J. Geophys. Res. 123 (11), 91509168.CrossRefGoogle Scholar
Nakamura, T. K. M., Nakamura, R., Varsani, A., Genestreti, K. J., Baumjohann, W. & Liu, Y.-H. 2018 b Remote sensing of the reconnection electric field from in situ multipoint observations of the separatrix boundary. Geophys. Res. Lett. 45 (9), 38293837.CrossRefGoogle Scholar
Ng, J., Hakim, A., Bhattacharjee, A., Stanier, A. & Daughton, W. 2017 Simulations of anti-parallel reconnection using a nonlocal heat flux closure. Phys. Plasmas 24 (8), 082112.CrossRefGoogle Scholar
Ng, J., Hakim, A., Juno, J. & Bhattacharjee, A. 2019 Drift instabilities in thin current sheets using a two-fluid model with pressure tensor effects. J. Geophys. Res. 124 (5), 33313346.CrossRefGoogle Scholar
Ng, J., Hakim, A., Wang, L. & Bhattacharjee, A. 2020 An improved ten-moment closure for reconnection and instabilities. Phys. Plasmas 27 (8), 082106.CrossRefGoogle Scholar
Ng, J., Huang, Y.-M., Hakim, A., Bhattacharjee, A., Stanier, A., Daughton, W., Wang, L. & Germaschewski, K. 2015 The island coalescence problem: scaling of reconnection in extended fluid models including higher-order moments. Phys. Plasmas 22 (11), 112104.CrossRefGoogle Scholar
Passot, T. & Sulem, P. L. 2003 Long-Alfvén-wave trains in collisionless plasmas. II. A Landau-fluid approach. Phys. Plasmas 10 (10), 39063913.CrossRefGoogle Scholar
Price, L., Swisdak, M., Drake, J. F., Burch, J. L., Cassak, P. A. & Ergun, R. E. 2017 Turbulence in three-dimensional simulations of magnetopause reconnection. J. Geophys. Res. 122 (11), 1108611099.CrossRefGoogle Scholar
Price, L., Swisdak, M., Drake, J. F., Cassak, P. A., Dahlin, J. T. & Ergun, R. E. 2016 The effects of turbulence on three-dimensional magnetic reconnection at the magnetopause. Geophys. Res. Lett. 43 (12), 60206027.CrossRefGoogle Scholar
Schmitz, H. & Grauer, R. 2006 Comparison of time splitting and backsubstitution methods for integrating Vlasov's equation with magnetic fields. Comput. Phys. Commun. 175, 86.CrossRefGoogle Scholar
Sharma, P., Hammett, G. W., Quataert, E. & Stone, J. M. 2006 Shearing box simulations of the MRI in a collisionless plasma. Astrophys. J. 637 (2), 952967.CrossRefGoogle Scholar
Shu, C.-W. & Osher, S. 1988 Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77 (2), 439471.CrossRefGoogle Scholar
Snyder, P. B., Hammett, G. W. & Dorland, W. 1997 Landau fluid models of collisionless magnetohydrodynamics. Phys. Plasmas 4 (11), 39743985.CrossRefGoogle Scholar
Stanier, A., Daughton, W., Chacón, L., Karimabadi, H., Ng, J., Huang, Y.-M., Hakim, A. & Bhattacharjee, A. 2015 Role of ion kinetic physics in the interaction of magnetic flux ropes. Phys. Rev. Lett. 115, 175004.CrossRefGoogle ScholarPubMed
TenBarge, J. M., Ng, J., Juno, J., Wang, L., Hakim, A. H. & Bhattacharjee, A. 2019 An extended MHD study of the 16 october 2015 MMS diffusion region crossing. J. Geophys. Res. 124 (11), 84748487.CrossRefGoogle Scholar
Wang, L., Germaschewski, K., Hakim, A., Dong, C., Raeder, J. & Bhattacharjee, A. 2018 Electron physics in 3-d two-fluid 10-moment modeling of Ganymede's magnetosphere. J. Geophys. Res. 123 (4), 28152830.CrossRefGoogle Scholar
Wang, L., Hakim, A. H., Bhattacharjee, A. & Germaschewski, K. 2015 Comparison of multi-fluid moment models with particle-in-cell simulations of collisionless magnetic reconnection. Phys. Plasmas 22 (1), 012108.CrossRefGoogle Scholar
Wang, L., Hakim, A. H., Ng, J., Dong, C. & Germaschewski, K. 2020 Exact and locally implicit source term solvers for multifluid-Maxwell systems. J. Comput. Phys. 415, 109510.CrossRefGoogle Scholar
Yamada, M., Ji, H., Hsu, S., Carter, T., Kulsrud, R., Bretz, N., Jobes, F., Ono, Y. & Perkins, F. 1997 Study of driven magnetic reconnection in a laboratory plasma. Phys. Plasmas 4 (5), 19361944.CrossRefGoogle Scholar