Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-29T03:42:07.810Z Has data issue: false hasContentIssue false

Gravitational instability on propagation of MHD waves in astrophysical plasma

Published online by Cambridge University Press:  28 May 2013

ALEMAYEHU MENGESHA CHERKOS
Affiliation:
Entoto Astronomical Observatory and Space Science Research Center, P.O. Box 8412, Addis Ababa, Ethiopia Department of Physics, Kotebe College, P.O. Box 31248, Addis Ababa, Ethiopia (alexye7@gmail.com)
S. B. TESSEMA
Affiliation:
Entoto Astronomical Observatory and Space Science Research Center, P.O. Box 8412, Addis Ababa, Ethiopia Department of Physics, Kotebe College, P.O. Box 31248, Addis Ababa, Ethiopia (alexye7@gmail.com)

Abstract

We determine the general dispersion relation for the propagation of magnetohydrodynamic (MHD) waves in astrophysical plasma by considering the effect of gravitational instability and viscosity with anisotropic pressure tensor and heat-conducting plasma. Basic MHD equations have been derived and linearized by the method of perturbation to develop the general form of dispersion relation equation. Our result indicates that the transverse propagation of waves in such a plasma is affected by the inclusion of heat conduction. For wave propagation, parallel to the magnetic field direction, we find that the fairhose mode is unaffected, whereas the mode corresponding to the gravitational instability is modified in astrophysical plasma with anisotropic pressure tensor being stable in the presence of viscosity and strong magnetic field at considerable wavelength.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham-Shrauner, B. 1967 Propagation of hydromagnetic waves through an anisotropic plasma. J. Plasma Phys. 1, 361378.CrossRefGoogle Scholar
Balbus, S. A. 2004 Viscous shear instability in weakly magnetized, dilute plasmas. Astrophys. J. 661, 857864.CrossRefGoogle Scholar
Ballai, I., Erdelyi, R. and Roberts, B. 2002 Ducted compressional waves in the magnetosphere in the double-polytropic approximation. J. Annales Geophysicae 20, 15531558.CrossRefGoogle Scholar
Ballai, I. and Marcu, A. 2004 The effect of anisotropy on the propagation of linear compressional waves in magnetic flux tubes: applications to astrophysical plasmas. J. Astron. Astrophys. 415, 691703.CrossRefGoogle Scholar
Bora, M. P. and Nayyar, N. K. 1991 Gravitational instability of a heat-conducting plasma. J. Astrophys. Space Sci. 179, 313320.CrossRefGoogle Scholar
Braginskii, S. I. 1965 Rev. Plasma Phys. 1, 205.Google Scholar
Brodin, G. and Stenflo, L. 1989 Three-wave coupling coefficients for magnetized plasmas with pressure anisotropy. J. Plasma Phys. 41, 199208.CrossRefGoogle Scholar
Campos, L. M. B. C. and Mendes, P. M. V. M. 2000 On the effect of viscosity and anisotropic resistivity on the damping of Alfvén waves. J. Plasma Phys. 63, 221238.CrossRefGoogle Scholar
Chandra, S., Kumthekar, B. K., Dak, G. M. and Sharma, M. K. 2010 Propagation of MHD waves in homogeneous plasma. Open Astron. J. 3, 711.CrossRefGoogle Scholar
Dangarh, B. K., Pensia, R. K., Shrivastava, V. and Prajapat, V. 2011 Analysis of jeans instability of partially ionized molecular cloud under influence of radiative effect and electron inertia. J. Adv. Studies Theor. Phys. 5, 755764.Google Scholar
Erdelyi, R. and Goossens, M. 1994 Viscous computations of resonant absorption of MHD waves in flux tubes by FEM. J. Astrophys. Space Sci. 213, 273298.CrossRefGoogle Scholar
Erdlyi, R. and Goossens, M. 1995 Resonant absorption of Alfvén waves in coronal loops in visco-resistive MHD. J. Astron. Astrophys. 294, 575586.Google Scholar
Gliddon, J. E. C. 1966 Gravitational instability of anisotropic plasma. Astrophys. J. 145, 583.CrossRefGoogle Scholar
Kumar, N., Kumar, P. and Singh, S. 2006 Coronal heating by MHD waves. J. Astron. Astrophys. 453, 10671078.CrossRefGoogle Scholar
Mengesha, A. and Tessema, S. B. 2013 Effect of viscosity on propagation of MHD waves in astrophysical plasma. J. Plasma Phys. 110. doi: http://dx.doi.org/10.1017/S0022377813000020.Google Scholar
Mikhailovskii, A. B., Lominadze, J. G., Smolyakov, A. I., Churikov, A. P., Pustovitov, V. D. and Erokhin, N. N 2008 Magnetic instabilities in collisionless astrophysical rotating plasma with anisotropic pressure. J. Plasma Phys. 15, 062904.CrossRefGoogle Scholar
Ofman, L., Davila, J. M. and Steinolfson, R. S. 1994 Coronal heating by the resonant absorption of Alfvén waves: The effect of viscous stress tensor. Astrophys. J. 421, 360371.CrossRefGoogle Scholar
Pandey, V. S. and Dwivedi, B. N. 2007 Dispersion relation for MHD waves in homegenous plasma. J. Bull. Astr. Soc. India 35, 465471.Google Scholar
Patidar, A. K., Pensia, R. K. and Shrivastava, V. 2012 Gravitational instability of a two-component rotating viscous plasma under the effect of arbitrary radiative heat-loss functions and electron inertia. J. Pure Appl. Ind. Phys. 2, 142154.Google Scholar
Pinter, B., Cadez, V. M. and Roberts, B. 1999 Waves and instabilities in a stratified isothermal atmosphere with constant Alfvén speed – revisited. J. Astron. Astrophys. 346, 190198.Google Scholar
Pinter, B., Erdelyi, R. and Goossens, M. 1996 The linear spectrum of twisted magnetic flux tubes in viscous MHD. J. Astro. Lett. Commun. 34, 169174.Google Scholar
Porter, L. J., Klimchuk, J. A. and Sturrock, P. A. 1994 The possible role of MHD waves in heating the solar corona. Astrophys. J. 435, 482501.CrossRefGoogle Scholar
Ren, H., Cao, J., Wu, Z. and Chu, P. K. 2011 Magnetorotational instability in a collisionless plasma with heat flux vector and an isotroppic plasma with self-gravitational effect. J. Plasma Phys. 18, 092117.CrossRefGoogle Scholar
Roberts, B. 1981 Wave propagation in a magnetically structured atmosphere. J. Sol. Phys. 69, 2738.CrossRefGoogle Scholar
Rosin, M. S., Schekochihin, A. A., Rincon, F. and Cowley, S. C. 2011 A non-linear theory of the parallel firehose and gyrothermal instabilities in a weakly collisional plasma. Mon. Notes R Astron. Soc. J. 413, 738.CrossRefGoogle Scholar
Ruderman, M. S., Oliver, R., Erdelyi, R., Ballester, J. L. and Goossens, M. 2000 Slow surface wave damping in plasmas with anisotropic viscosity and thermal conductivity. J. Astron. Astrophys. 354, 261276.Google Scholar
Ruderman, M. S., Verwichte, E., Erdelyi, R. and Goossens, M. 1996 Dissipative instability of the MHD tangential discontinuity in magnetised plasmas with anisotropic viscosity and thermal conductivity. J. Plasma Phys. 56, 285306.CrossRefGoogle Scholar
Schoeffler, K. M., Drake, J. F. and Swisdak, M. 2012 The effects of plasma beta and anisotropy instabilities on the dynamics of reconnecting magnetic fields in the heliosheath. Astrophys. J. 5, 20742–3511.Google Scholar
Singh, B. and Kalra, G. L. 1986 Gravitational instability of thermal anisotropic plasma. J. Astrophys. 304, 610.CrossRefGoogle Scholar
Tessema, S. B. 2011 Accretion Discs Around Magnetized Stars, in Particular Neutron Stars. Saarbrücken, Germany: Lap Lambert Acadamic Publishing.Google Scholar
Tessema, S. B. and Torkelsson, U. 2010 The structure of thin accretion discs around magnetized stars. J. Astron. Astrophys. 509, A45.Google Scholar