Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T03:25:00.161Z Has data issue: false hasContentIssue false

Gyrokinetic stability of electron–positron–ion plasmas

Published online by Cambridge University Press:  21 February 2018

A. Mishchenko*
Affiliation:
Max Planck Institute for Plasma Physics, D-17491 Greifswald, Germany
A. Zocco
Affiliation:
Max Planck Institute for Plasma Physics, D-17491 Greifswald, Germany
P. Helander
Affiliation:
Max Planck Institute for Plasma Physics, D-17491 Greifswald, Germany
A. Könies
Affiliation:
Max Planck Institute for Plasma Physics, D-17491 Greifswald, Germany
*
Email address for correspondence: alexey.mishchenko@ipp.mpg.de

Abstract

The gyrokinetic stability of electron–positron plasmas contaminated by an ion (proton) admixture is studied in a slab geometry. The appropriate dispersion relation is derived and solved. Stable K-modes, the universal instability, the ion-temperature-gradient-driven instability, the electron-temperature-gradient-driven instability and the shear Alfvén wave are considered. It is found that the contaminated plasma remains stable if the contamination degree is below some threshold and that the shear Alfvén wave can be present in a contaminated plasma in cases where it is absent without ion contamination.

Type
Research Article
Copyright
© Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Carpentier, M. P. & Santos, A. F. D. 1982 Solution of equations involving analytic functions. J. Comput. Phys. 45, 210220.Google Scholar
Coppi, B., Rosenbluth, M. N. & Sagdeev, R. Z. 1967 Instabilities due to temperature gradients in complex magnetic field configurations. Phys. Fluids 10, 582587.Google Scholar
Davies, B. 1986 Locating the zeros of an analytic function. J. Comput. Phys. 66, 3649.Google Scholar
Fried, B. D. & Gould, R. W. 1961 Longitudinal ion oscillations in a hot plasma. Phys. Fluids 4 (1), 139147.CrossRefGoogle Scholar
Helander, P. 2014 Microinstability of magnetically confined electron–positron plasmas. Phys. Rev. Lett. 113, 135003+4.CrossRefGoogle Scholar
Helander, P. & Connor, J. W. 2016 Gyrokinetic stability theory of electron–positron plasmas. J. Plasma Phys. 82, 9058203+13.CrossRefGoogle Scholar
Pedersen, T., Boozer, A. H., Dorland, W., Kremer, J. P. & Schmitt, R. 2003 Prospects for the creation of positron–electron plasmas in a non-neutral stellarator. J. Phys B: At. Mol. Opt. Phys. 36, 10291039.Google Scholar
Pedersen, T. S., Danielson, J. R., Hugenschmidt, C., Marx, G., Sarasola, X., Schauer, F., Schweikhard, L., Surko, C. M. & Winkler, E. 2012 Plans for the creation and studies of electron–positron plasmas in a stellarator. New J. Phys. 14, 03510+13.Google Scholar
Saitoh, H., Stanja, J., Stenson, E. V., Hergenhahn, U., Niemann, H., Pedersen, T.S., Stoneking, M.R., Piochacz, C. & Hugenschmidt, C. 2015 Efficient injection of an intense positron beam into a dipole magnetic field. New J. Phys. 17, 103038+9.CrossRefGoogle Scholar
Yegorenkov, V. & Stepanov, K. 1987 Kinetychni potenzialni elektronni hvyli u plasmi. Dop. Akademii Nauk URSR, Ser. A (8), 44.Google Scholar
Yegorenkov, V. & Stepanov, K. 1988 Electron cyclotron k-modes in plasmas. J. Expl Theor. Phys. 94, 116.Google Scholar
Zocco, A. 2017 Slab magnetised non-relativistic low-beta electron–positron plasmas: collisionless heating, linear waves and reconnecting instabilities. J. Plasma Phys. 83, 715830602+17.Google Scholar