Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-10T14:57:25.637Z Has data issue: false hasContentIssue false

Higher radial modes of azimuthal surface waves in magnetoactive cylindrical plasma waveguides

Published online by Cambridge University Press:  05 November 2018

Igor O. Girka*
Affiliation:
V.N. Karazin Kharkiv National University, Kharkiv, 61022, Ukraine
V. M. Kondratenko
Affiliation:
V.N. Karazin Kharkiv National University, Kharkiv, 61022, Ukraine
M. Thumm
Affiliation:
Karlsruhe Institute of Technology, IHM and IHE, 76131, Karlsruhe, Germany
*
Email address for correspondence: igorgirka@karazin.ua

Abstract

Azimuthal surface waves are eigenmodes of cylindrical plasma–dielectric–metal structures both in the presence of and without an axial static magnetic field. They are actively studied due to possible applications in plasma electronics, nanotechnologies and biomedical diagnostics. Higher radial modes are known to propagate at higher frequencies and shorter wavelengths compared to those of the zeroth mode, a feature which is of interest for practical applications. To gain the advantage of the excitation of higher radial modes of azimuthal surface waves one has first to know their dispersion properties. This paper generalizes the results of earlier papers by including a static axial magnetic field and considering the higher radial modes. The presence of the constant axial magnetic field removes the degeneracy in the wave spectrum with respect to the sign of the azimuthal wavenumber.

Keywords

Type
Research Article
Copyright
© Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I. 1972 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Applied Mathematics Series. National Bureau of Standards.Google Scholar
Azarenkov, N. A., Kondratenko, A. N. & Ostrikov, K. N. 1993 Surface waves in plasma-metal structures. Radiophys. Quant. Electron. 36, 213247.Google Scholar
Azarenkov, N. A., Ostrikov, K. N. & Shcherbinina, I. B. 1991 Azimuthal surface waves in a coaxial semiconductor structure with metal walls. Sov. J. Commun. Technol. 36, 6872.Google Scholar
Baieva, S., Ihalainen, J. A. & Toppari, J. J. 2013 Strong coupling between surface plasmon polaritons and $\unicode[STIX]{x1D6FD}$ -carotene in nanolayered system. J. Chem. Phys. 138, 044707.Google Scholar
Brambilla, M. 1998 Kinetic Theory of Plasma Waves: Homogeneous Plasmas, International Series on Monographs on Physics, vol. 96. Clarendon Press.Google Scholar
Daryanoosh, S. & Mehdian, H. 2007 Dispersion relation for azimuthal electromagnetic surface waves on a magnetized annular plasma in a metal waveguide with coaxial anisotropic dielectric inner coating. J. Plasma Phys. 73 (6), 839855.Google Scholar
Destler, W. W., Chojnacki, E., Hoeberling, R. F., Lawson, W., Singh, A. & Striffler, C. D. 1988 High-power microwave generation from Large–Orbit devices. IEEE Trans. Plasma Sci. 16 (2), 7189.Google Scholar
Elliott, R. S. 1955 Azimuthal surface waves on circular cylinders. J. Appl. Phys. 26, 368376.Google Scholar
Girka, V. A., Girka, I. A., Kondratenko, A. N. & Tkachenko, V. I. 1988 Azimuthal surface waves of magnetoactive plasma wavequides. Sov. J. Commun. Technol. Electron. 33 (8), 3741.Google Scholar
Girka, V. A., Girka, I. A., Kondratenko, A. N. & Tkachenko, V. I. 1989a Azimuthal surface waves at the boundary between a magnetoactive plasma and a metal. Sov. J. Commun. Technol. Electron. 34 (4), 9699.Google Scholar
Girka, V. A., Girka, I. A., Kondratenko, A. N. & Tkachenko, V. I. 1989b Azimuthal surface modes of isotropic plasma waveguides. Sov. J. Commun. Technol. Electron. 34 (15), 103105.Google Scholar
Girka, V. O., Girka, I. O. & Pavlenko, I. V. 2001 Electrodynamic model of the gas discharge sustained by azimuthal surface waves. Contrib. Plasma Phys. 41 (4), 393406.Google Scholar
Girka, V. O., Girka, I. O. & Pavlenko, I. V. 2011a Excitation of azimuthal surface modes by relativistic flows of electrons in high-frequency range. Plasma Phys. Rep. 37, 447454.Google Scholar
Girka, V. O., Girka, I. O. & Pavlenko, I. V. 2011b Excitation of ion azimuthal surface modes in a magnetized plasma by annular flow of light ions. Prog. Electromag. Res. M (PIERM) 21, 267278.Google Scholar
Girka, V. O., Girka, I. O., Morgal, Ya. I. & Pavlenko, I. V. 2011 Excitation of azimuthal surface modes by annular electron beams in the range of electron cyclotron frequency. Phys. Scr. 84, 025505.Google Scholar
Girka, V., Girka, I. & Thumm, M. 2014 Surface Flute Waves in Plasmas. Theory and Applications. Springer.Google Scholar
Girka, I. O., Omelchenko, I. V. & Sydora, R. 2017 Higher radial modes of azimuthal surface waves in cylindrical waveguides without external magnetic field. Prog. Electromagn. Res. M 54, 17.Google Scholar
Girka, I., Pavlenko, I. & Thumm, M. 2018 Excitation of higher radial modes of azimuthal surface waves in the electron cyclotron frequency range by rotating relativistic flow of electrons in cylindrical waveguides partially filled by plasmas. Phys. Plasmas 25, 052109.Google Scholar
Horiuchi, K. 1953 Surface wave propagation over a coated conductor with small cylindrical curvature in direction of travel. J. Appl. Phys. 24, 961962.Google Scholar
Jazi, B. & Mehdian, H. 2004 Dispersion relation of azimuthal electromagnetic surface waves on a magnetized plasma column in a dielectric lined slow-wave waveguide. Plasma Phys. Control. Fusion 46 (3), 507518.Google Scholar
Jazi, B. & Shokri, B. 2005 Excitation of electromagnetic surface waves by an annular electron beam in a plasma waveguide with a dielectric rod and a magnetized plasma column. Plasma Phys. Control. Fusion 47, 3747.Google Scholar
Jazi, B., Shokri, B. & Arbab, H. 2006 Azimuthal electromagnetic surface waves in a rod dielectric magnetized plasma waveguide and their excitation by an annular relativistic rotating electron beam. Plasma Phys. Control. Fusion 48, 11051123.Google Scholar
Ostrikov, K., Neyts, E. C. & Meyyappan, M. 2013 Plasma nanoscience: from nano-solids in plasmas to nano-plasmas in solids. Adv. Phys. 62 (2), 113224.Google Scholar
Shokri, B. & Jazi, B. 2003 Azimuthal electromagnetic surface waves on an annular magnetized plasma. Phys. Lett. A 318, 415424.Google Scholar
Wait, J. R. 1965 Waves circulating around a rigid cylindrical obstacle in a compressible plasma. Radio Sci. J. Res. NBS/USBC-URSI 69D, 567577.Google Scholar
Wait, J. R. 1966 Transverse propagation of waveguide modes in a cylindrically stratified magnetoplasma. Radio Sci. 1, 641654.Google Scholar