Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T06:41:20.308Z Has data issue: false hasContentIssue false

Implementation of higher-order velocity mapping between marker particles and grid in the particle-in-cell code XGC

Published online by Cambridge University Press:  04 May 2021

Albert Mollén*
Affiliation:
Theory Department, Princeton Plasma Physics Laboratory, Princeton, NJ08543-0451, USA
M. F. Adams
Affiliation:
Scalable Solvers Group, Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720, USA
M. G. Knepley
Affiliation:
Computer Science and Engineering, State University of New York at Buffalo, Buffalo, NY14260-2500, USA
R. Hager
Affiliation:
Theory Department, Princeton Plasma Physics Laboratory, Princeton, NJ08543-0451, USA
C. S. Chang
Affiliation:
Theory Department, Princeton Plasma Physics Laboratory, Princeton, NJ08543-0451, USA
*
Email address for correspondence: amollen@pppl.gov

Abstract

The global total-$f$ gyrokinetic particle-in-cell code XGC, used to study transport in magnetic fusion plasmas or to couple with a core gyrokinetic code while functioning as an edge gyrokinetic code, implements a five-dimensional continuum grid to perform the dissipative operations, such as plasma collisions, or to exchange the particle distribution function information with a core code. To transfer the distribution function between marker particles and a rectangular two-dimensional velocity-space grid, XGC employs a bilinear mapping. The conservation of particle density and momentum is accurate enough in this bilinear operation, but the error in the particle energy conservation can become undesirably large and cause non-negligible numerical heating in a steep edge pedestal. In the present work we update XGC to use a novel mapping technique, based on the calculation of a pseudo-inverse, to exactly preserve moments up to the order of the discretization space. We describe the details of the implementation and we demonstrate the reduced interpolation error for a tokamak test plasma using first- and second-order elements with the pseudo-inverse method and comparing with the bilinear mapping.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alves, E. P., Mori, W. B. & Fiuza, F. 2021 Numerical heating in particle-in-cell simulations with Monte Carlo binary collisions. Phys. Rev. E 103 (013306).CrossRefGoogle ScholarPubMed
Balay, S., et al. 2020 PETSc users manual. Tech. Rep. ANL-95/11 - Revision 3.14. Argonne National Laboratory. Available at: https://www.mcs.anl.gov/petsc.Google Scholar
Chang, C. S., Ku, S., Diamond, P. H., Lin, Z., Parker, S., Hahm, T. S. & Samatova, N. 2009 Compressed ion temperature gradient turbulence in diverted tokamak edge. Phys. Plasmas 16 (056108).CrossRefGoogle Scholar
Crouseilles, N., Mehrenberger, M. & Sonnendrücker, E. 2010 Conservative semi-Lagrangian schemes for Vlasov equations. J. Comput. Phys. 229, 19271953.CrossRefGoogle Scholar
Dominski, J., et al. 2021 Spatial coupling of gyrokinetic simulations, a generalized scheme based on first-principles. Phys. Plasmas 28 (022301).CrossRefGoogle Scholar
Dominski, J., Ku, S., Chang, C. S., Choi, J., Suchyta, E., Parker, S., Klasky, S. & Bhattacharjee, A. 2018 A tight-coupling scheme sharing minimum information across a spatial interface between gyrokinetic turbulence codes. Phys. Plasmas 25 (072308).CrossRefGoogle Scholar
Faghihi, D., Carey, V., Michoski, C., Hager, R., Janhunen, S., Chang, C. S. & Moser, R. D. 2020 Moment preserving constrained resampling with applications to particle-in-cell methods. J. Comput. Phys. 409 (109317).CrossRefGoogle Scholar
Hager, R., Dominski, J. & Chang, C. S. 2019 Cross-verification of neoclassical transport solutions from XGCa against NEO. Phys. Plasmas 26 (104502).CrossRefGoogle Scholar
Hager, R., Yoon, E. S., Ku, S., D'Azevedo, E. F., Worley, P. H. & Chang, C. S. 2016 A fully non-linear multi-species Fokker–Planck–Landau collision operator for simulation of fusion plasma. J. Comput. Phys. 315, 644660.CrossRefGoogle Scholar
Helander, P. & Sigmar, D. J. 2002 Collisional Transport in Magnetized Plasmas. Cambridge University Press. ISBN:978-0-521-80798-2.Google Scholar
Hirvijoki, E. & Adams, M. F. 2017 Conservative discretization of the Landau collision integral. Phys. Plasmas 24 (032121).CrossRefGoogle Scholar
Hirvijoki, E., Kraus, M. & Burby, J. W. 2018 Metriplectic particle-in-cell integrators for the Landau collision operator. Available at: https://arxiv.org/abs/1802.05263.Google Scholar
Ku, S., Chang, C. S. & Diamond, P. H. 2009 Full-f gyrokinetic particle simulation of centrally heated global ITG turbulence from magnetic axis to edge pedestal top in a realistic tokamak geometry. Nucl. Fusion 49 (115021).CrossRefGoogle Scholar
Ku, S., Chang, C. S., Hager, R., Churchill, R. M., Tynan, G. R., Cziegler, I., Greenwald, M., Hughes, J., Parker, S. E., Adams, M. F., D'Azevedo, E. & Worley, P. 2018 A fast low-to-high confinement mode bifurcation dynamics in the boundary-plasma gyrokinetic code XGC1. Phys. Plasmas 25 (056107).CrossRefGoogle Scholar
Ku, S., Hager, R., Chang, C. S., Kwon, J. M. & Parker, S. E. 2016 A new hybrid-Lagrangian numerical scheme for gyrokinetic simulation of tokamak edge plasma. J. Comput. Phys. 315, 467475.CrossRefGoogle Scholar
Kwon, J.-M., Yi, D., Piao, X. & Kim, P. 2015 Development of semi-Lagrangian gyrokinetic code for full-f turbulence simulation in general tokamak geometry. J. Comput. Phys. 283, 518540.CrossRefGoogle Scholar
Landau, L. D. 1936 Die kinetische Gleichung für den Fall Coulombscher Wechselwirkung. Phys. Z. Sowjetunion 10 (154).Google Scholar
Penrose, R. 1955 A generalized inverse for matrices. Math. Proc. Camb. Phil. Soc. 51, 406413.CrossRefGoogle Scholar
Sonnendrücker, E., Roche, J., Bertrand, P. & Ghizzo, A. 1999 The semi-Lagrangian method for the numerical resolution of the Vlasov equation. J. Comput. Phys. 149, 201220.CrossRefGoogle Scholar
Yoon, E. S. & Chang, C. S. 2014 A Fokker–Planck–Landau collision equation solver on two-dimensional velocity grid and its application to particle-in-cell simulation. Phys. Plasmas 21 (032503).Google Scholar