Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T14:49:53.186Z Has data issue: false hasContentIssue false

Interaction of a biased cylinder with a flowing dusty plasma

Published online by Cambridge University Press:  06 March 2013

J. K. MEYER
Affiliation:
Department of Physics and Astronomy, The University of Iowa, Iowa City, IA 52242, USA (robert-merlino@uiowa.edu)
J. R. HEINRICH
Affiliation:
Air Force Research Laboratory, Kirtland AFB, Albuquerque, NM 87117-5776, USA
S.-H. KIM
Affiliation:
Department of Physics and Astronomy, The University of Iowa, Iowa City, IA 52242, USA (robert-merlino@uiowa.edu)
R. L. MERLINO
Affiliation:
Department of Physics and Astronomy, The University of Iowa, Iowa City, IA 52242, USA (robert-merlino@uiowa.edu)

Abstract

Experimental observations of supersonically flowing dusty plasmas and their interaction with an electrically biased circular cylinder are presented. Two methods for producing flowing dusty plasmas are described. The dusty plasma is produced in a DC anode glow discharge plasma. In Configuration I, a secondary dust cloud, initially formed near a biased grid, flowed away from the grid at supersonic speeds when the grid voltage was suddenly changed. In Configuration II, a pencil-like dust beam was produced using a nozzle-like (converging-diverging) electrostatic potential structure. Using Configuration I, the streaming dust encountered a biased cylinder (wire) whose axis was oriented transverse to the dust flow. The flowing dust particles were repelled by the electrostatic field of the negatively charged cylinder, and a dust void was formed around the cylinder. A detached electrohydrodynamic bow shock, akin to the Earth's magnetohydrodynamic bow shock, was formed on the upstream side of the cylinder, while an extended teardrop-shaped wake region was formed on the downstream side. Video imaging of the dust stream allowed for observations of the structure and evolution of the bow shock. Configuration II was used to produce a narrow beam of dust particles and observe how the beam was deflected around the biased cylinder. Three multimedia files (movies) of the observed phenomena are provided in the online Supplementary material.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge: Cambridge University Press.Google Scholar
Castellanos, A. 1994 Electrohydrodynamics: basic equations and dimensionless numbers. In: Fluid Physics: Lecture Notes of Summer Schools (ed. Velarde, M. G. and Christov, C. I.). Madrid: World Scientific, pp. 1432.Google Scholar
D'Angelo, N. and Merlino, R. L. 1986 IEEE Trans. Plasma Sci. PS-14, 609.CrossRefGoogle Scholar
Heinrich, J. H., Kim, S.-H., Meyer, J. and Merlino, R. L. 2011 Phys. Plasmas 18, 113706.CrossRefGoogle Scholar
Klindworth, M., Piel, A., Melzer, A., Konopka, U., Rothermel, H., Taranik, K. and Morfill, G. E. 2004 Phys. Rev. Lett. 93, 195002.CrossRefGoogle Scholar
Landau, L. D. and Lifshitz, E. M. 1987 Fluid Mechanics, 2nd edn.Oxford: Pergamon Press.Google Scholar
Luhmann, J. G. 1986 Space Sci. Rev. 44, 41.CrossRefGoogle Scholar
Melcher, J. R. and Talyor, G. I. 1969 Ann. Rev. Fluid Mech. 1, 111.CrossRefGoogle Scholar
Merlino, R. L. and D'Angelo, N. 1987 J. Plasma Phys. 37, 185.CrossRefGoogle Scholar
Morfill, G. E. and Ivlev, A. V. 2009 Rev. Mod. Phys. 81, 1354.CrossRefGoogle Scholar
Morfill, G. E., Rubin-Zuzic, M., Rothermel, H., Ivlev, A. V., Klumov, B. A., Thomas, H. M. and Konopka, U. 2004 Phys. Rev. Lett. 92, 175004.CrossRefGoogle Scholar
Murphy, G. B., Reasoner, D. L., Tribble, A., D'Angelo, N., Pickett, J. S. and Kurth, W. S. 1989 J. Geophys. Res. 94, 6866.Google Scholar
Saitou, Y., Nakamura, Y., Kamimura, T. and Ishihara, O. 2012 Phys. Rev. Lett. 108, 065004.CrossRefGoogle Scholar
Samir, U. 1981 Adv. Space Res. 1, 373.CrossRefGoogle Scholar
Samsonov, D., Goree, J., Ma, Z. W., Bhattacharjee, A., Thomas, H. M. and Morfill, G. E. 1999 Phys. Rev. Lett. 83, 3649.CrossRefGoogle Scholar
Saville, D. A. 1997 Ann. Rev. Fluid Mech. 29, 27.CrossRefGoogle Scholar
Shukla, P. K. and Eliasson, B. 2009 Rev. Mod. Phys. 81, 25.CrossRefGoogle Scholar
Stone, N. H. 1981a J. Plasma Phys. 25, 351.CrossRefGoogle Scholar
Stone, N. H. 1981b J. Plasma Phys. 26, 385.CrossRefGoogle Scholar
Stone, N. H. and Samir, U. 1981 Adv. Space Res. 1, 361.CrossRefGoogle Scholar
Thomas, E. Jr., Avinash, K. and Merlino, R. L. 2004 Phys. Plasmas 11, 1770.CrossRefGoogle Scholar
Thompson, C. O., D'Angelo, N. and Merlino, R. L. 1999 Phys. Plasmas 6, 1421.CrossRefGoogle Scholar
Wang, X. and Bhattacharjee, A. 2000 Phys. Plasmas 7, 3093.CrossRefGoogle Scholar
Zhakin, A. I. 2012 Phys.–Uspekhi 55, 465.CrossRefGoogle Scholar

Meyer Supplementary Material

Movie 1

Download Meyer Supplementary Material(Video)
Video 169.2 KB

Meyer Supplementary Material

Movie 2

Download Meyer Supplementary Material(Video)
Video 213.8 KB

Meyer Supplementary Material

Movie 3

Download Meyer Supplementary Material(Video)
Video 101.2 KB