Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T12:04:35.309Z Has data issue: false hasContentIssue false

Investigation of the collisionless plasmoid instability based on gyrofluid and gyrokinetic integrated approach

Published online by Cambridge University Press:  11 July 2023

C. Granier*
Affiliation:
Université Côte d'Azur, CNRS, Observatoire de la Côte d'Azur, Laboratoire J. L. Lagrange, Boulevard de l'Observatoire, CS 34229, 06304 Nice Cedex 4, France
R. Numata
Affiliation:
Graduate School of Information Science, University of Hyogo, Kobe 650-0047, Japan
D. Borgogno
Affiliation:
Istituto dei Sistemi Complessi - CNR and Dipartimento di Energia, Politecnico di Torino, Torino 10129, Italy
E. Tassi
Affiliation:
Université Côte d'Azur, CNRS, Observatoire de la Côte d'Azur, Laboratoire J. L. Lagrange, Boulevard de l'Observatoire, CS 34229, 06304 Nice Cedex 4, France
D. Grasso
Affiliation:
Istituto dei Sistemi Complessi - CNR and Dipartimento di Energia, Politecnico di Torino, Torino 10129, Italy
*
Email address for correspondence: camille.granier@oca.eu

Abstract

In this work, the development of two-dimensional current sheets with respect to tearing modes, in collisionless plasmas with a strong guide field, is analysed. During their nonlinear evolution, these thin current sheets can become unstable to the formation of plasmoids, which allows the magnetic reconnection process to reach high reconnection rates. We carry out a detailed study of the effect of a finite $\beta _e$, which also implies finite electron Larmor radius effects, on the collisionless plasmoid instability. This study is conducted through a comparison of gyrofluid and gyrokinetic simulations. The comparison shows in general a good capability of the gyrofluid models in predicting the plasmoid instability observed with gyrokinetic simulations. We show that the effects of $\beta _e$ promotes the plasmoid growth. The effect of the closure applied during the derivation of the gyrofluid model is also studied through the comparison among the variations of the different contributions to the total energy.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aydemir, A.Y. 1992 Nonlinear studies of $m=1$ modes in high-temperature plasmas. Phys. Fluids B: Plasma Phys. 4 (11), 34693472.CrossRefGoogle Scholar
Baty, H. 2014 Effect of plasma-$\beta$ on the onset of plasmoid instability in Sweet–Parker current sheets. J.Plasma Phys. 80 (5), 655665.CrossRefGoogle Scholar
Bhat, P. & Loureiro, N.F. 2018 Plasmoid instability in the semi-collisional regime. J.Plasma Phys. 84 (6), 905840607arXiv:1804.05145CrossRefGoogle Scholar
Biskamp, D. 1986 Magnetic reconnection via current sheets. Phys. Fluids 29 (5), 15201531.CrossRefGoogle Scholar
Brizard, A. 1992 Nonlinear gyrofluid description of turbulent magnetized plasmas. Phys. Fluids B 4, 12131228.CrossRefGoogle Scholar
Burch, J.L., Torbert, R.B., Phan, T.D., Chen, L.-J., Moore, T.E., Ergun, R.E., Eastwood, J.P., Gershman, D.J., Cassak, P.A., Argall, M.R., et al. 2016 Electron-scale measurements of magnetic reconnection in space. Science 352 (6290), aaf2939.CrossRefGoogle ScholarPubMed
Cafaro, E., Grasso, D., Pegoraro, F., Porcelli, F. & Saluzzi, A. 1998 Invariants and geometric structures in nonlinear hamiltonian magnetic reconnection. Phys. Rev. Lett. 80, 44304433.CrossRefGoogle Scholar
Comisso, L., Grasso, D., Waelbroeck, F.L. & Borgogno, D. 2013 Gyro-induced acceleration of magnetic reconnection. Phys. Plasmas 20 (9), 092118.CrossRefGoogle Scholar
Daughton, W. & Roytershteyn, V. 2012 Emerging parameter space map of magnetic reconnection in collisional and kinetic regimes. Space Sci. Rev. 172 (1-4), 271282.CrossRefGoogle Scholar
Del Sarto, D. & Deriaz, E. 2017 A multigrid AMR algorithm for the study of magnetic reconnection. J.Comput. Phys. 351, 511533.CrossRefGoogle Scholar
Del Sarto, D., Marchetto, C., Pegoraro, F. & Califano, F. 2011 Finite Larmor radius effects in the nonlinear dynamics of collisionless magnetic reconnection. Plasma Phys. Control. Fusion 53 (3), 035008.CrossRefGoogle Scholar
Despain, K.M. 2011 Gyrofluid modeling of turbulent, kinetic physics. PhD thesis, University of Maryland.Google Scholar
Dorland, W. & Hammett, G.W. 1993 Gyrofluid turbulence models with kinetic effects. Phys. Fluids B 5, 812835.CrossRefGoogle Scholar
Furth, H.P., Killeen, J. & Rosenbluth, M.N. 1963 Finite resistivity instabilities of a sheet pinch. Phys. Fluids 6, 459.CrossRefGoogle Scholar
Granier, C., Borgogno, D., Comisso, L., Grasso, D., Tassi, E. & Numata, R. 2022 a Marginally stable current sheets in collisionless magnetic reconnection. Phys. Rev. E 106, L043201.CrossRefGoogle ScholarPubMed
Granier, C., Borgogno, D., Grasso, D. & Tassi, E. 2022 b Gyrofluid analysis of electron $\beta _e$ effects on collisionless reconnection. J.Plasma Phys. 88 (1), 905880111.CrossRefGoogle Scholar
Granier, C., Tassi, E., Borgogno, D. & Grasso, D. 2021 Impact of electron temperature anisotropy on the collisionless tearing mode instability in the presence of a strong guide field. Phys. Plasmas 28 (2), 022112.CrossRefGoogle Scholar
Grasso, D. & Borgogno, D. 2022 Fluid Models for Collisionless Magnetic Reconnection. IOP Publishing.CrossRefGoogle Scholar
Howes, G.G., Cowley, S.C., Dorland, W., Hammett, G.W., Quataert, E. & Schekochihin, A.A. 2006 Astrophysical gyrokinetics: basic equations and linear theory. Astrophys. J. 651 (1), 590614.CrossRefGoogle Scholar
Ji, H. & Daughton, W. 2011 Phase diagram for magnetic reconnection in heliophysical, astrophysical, and laboratory plasmas. Phys. Plasmas 18 (11), 111207.CrossRefGoogle Scholar
Kulsrud, R.M. 1983 MHD description of plasma. In Handbook of Plasma Physics (ed. A.A. Galeev & R.N. Sudan), vol. 1, p. 115. North-Holland.Google Scholar
Loureiro, N.F., Cowley, S.C., Dorland, W.D., Haines, M.G. & Schekochihin, A.A. 2005 $x$-point collapse and saturation in the nonlinear tearing mode reconnection. Phys. Rev. Lett. 95, 235003.CrossRefGoogle ScholarPubMed
Loureiro, N.F., Schekochihin, A.A. & Zocco, A. 2013 Fast collisionless reconnection and electron heating in strongly magnetized plasmas. Phys. Rev. Lett. 111, 025002.CrossRefGoogle ScholarPubMed
Loureiro, N.F. & Uzdensky, D.A. 2015 Magnetic reconnection: from the Sweet–Parker model to stochastic plasmoid chains. Plasma Phys. Control. Fusion 58 (1), 014021.CrossRefGoogle Scholar
Mandell, N.R., Dorland, W. & Landreman, M. 2018 Laguerre–Hermite pseudo-spectral velocity formulation of gyrokinetics. J.Plasma Phys. 84, 905840108.CrossRefGoogle Scholar
Ni, L., Ziegler, U., Huang, Y.-M., Lin, J. & Mei, Z. 2012 Effects of plasma $\beta$ on the plasmoid instability. Phys. Plasmas 19 (7), 072902.CrossRefGoogle Scholar
Numata, R., Dorland, W., Howes, G.G., Loureiro, N.F., Rogers, B.N. & Tatsuno, T. 2011 Gyrokinetic simulations of the tearing instability. Phys. Plasmas 18 (11), 112106.CrossRefGoogle Scholar
Numata, R., Howes, G.G., Tatsuno, T., Barnes, M. & Dorland, W. 2010 AstroGK: astrophysical gyrokinetics code. J.Comput. Phys. 229 (24), 93479372.CrossRefGoogle Scholar
Numata, R. & Loureiro, N.F. 2015 Ion and electron heating during magnetic reconnection in weakly collisional plasmas. J.Plasma Phys. 81 (2), 305810201.CrossRefGoogle Scholar
Olson, J., Egedal, J., Greess, S., Myers, R., Clark, M., Endrizzi, D., Flanagan, K., Milhone, J., Peterson, E., Wallace, J., et al. 2016 Experimental demonstration of the collisionless plasmoid instability below the ion kinetic scale during magnetic reconnection. Phys. Rev. Lett. 116, 255001.CrossRefGoogle ScholarPubMed
Phan, T., Eastwood, J., Shay, M., Drake, J., Sonnerup, B., Fujimoto, M., Cassak, P., Oieroset, M., Burch, J., Torbert, R., et al. 2018 Electron magnetic reconnection without ion coupling in Earth's turbulent magnetosheath. Nature 557.CrossRefGoogle ScholarPubMed
Porcelli, F. 1991 Collisionless $m=1$ tearing mode. Phys. Rev. Lett. 66, 425428.CrossRefGoogle ScholarPubMed
Pueschel, M.J., Jenko, F., Told, D. & Büchner, J. 2011 Gyrokinetic simulations of magnetic reconnection. Phys. Plasmas 18 (11), 112102.CrossRefGoogle Scholar
Rogers, B.N., Kobayashi, S., Ricci, P., Dorland, W., Drake, J. & Tatsuno, T. 2007 Gyrokinetic simulations of collisionless magnetic reconnection. Phys. Plasmas 14 (9), 092110.CrossRefGoogle Scholar
Schekochihin, A.A., Cowley, S.C., Dorland, W., Hammett, G.W., Howes, G.G., Quataert, E. & Tatsuno, T. 2009 Astrophysical gyrokinetics: kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas. Astrophys. J. Suppl. Ser. 182 (1), 310377arXiv:0704.0044CrossRefGoogle Scholar
Schep, T.J., Pegoraro, F. & Kuvshinov, B.N. 1994 Generalized two-fluid theory of nonlinear magnetic structures. Phys. Plasmas 1, 28432851.CrossRefGoogle Scholar
Scott, B.D. 2010 Derivation via free energy conservation constraints of gyrofluid equations with finite-gyroradius electromagnetic nonlinearities. Phys. Plasmas 17, 102306.CrossRefGoogle Scholar
Shi, Y., Lee, L.C. & Fu, Z.F. 1987 A study of tearing instability in the presence of a pressure anisotropy. J.Geophys. Res.: Space Phys. 92 (A11), 1217112179.CrossRefGoogle Scholar
Szegö, G. 1975 Orthogonal Polynomials. American Mathematical Society.Google Scholar
Tassi, E., Grasso, D., Borgogno, D., Passot, T. & Sulem, P.L. 2018 A reduced Landau-gyrofluid model for magnetic reconnection driven by electron inertia. J.Plasma Phys. 84 (4), 725840401.CrossRefGoogle Scholar
Tassi, E., Passot, T. & Sulem, P.L. 2020 A Hamiltonian gyrofluid model based on a quasi-static closure. J.Plasma Phys. 86, 835860402.CrossRefGoogle Scholar
Uzdensky, D.A., Loureiro, N.F. & Schekochihin, A.A. 2010 a Fast magnetic reconnection in the plasmoid-dominated regime. Phys. Rev. Lett. 105, 235002.CrossRefGoogle ScholarPubMed
Uzdensky, D.A., Loureiro, N.F. & Schekochihin, A.A. 2010 b Fast magnetic reconnection in the plasmoid-dominated regime. Phys. Rev. Lett. 105, 235002.CrossRefGoogle ScholarPubMed
Zacharias, O., Comisso, L., Grasso, D., Kleiber, R., Borchardt, M. & Hatzky, R. 2014 Numerical comparison between a gyrofluid and gyrokinetic model investigating collisionless magnetic reconnection. Phys. Plasmas 21 (6), 062106.CrossRefGoogle Scholar
Zocco, A. & Schekochihin, A.A. 2011 Reduced fluid-kinetic equations for low-frequency dynamics, magnetic reconnection, and electron heating in low-beta plasmas. Phys. Plasmas 18 (10), 102309.CrossRefGoogle Scholar