Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-14T17:59:08.409Z Has data issue: false hasContentIssue false

Investigation on the feasibility of fusion in a compressed beam of ions subject to an electrostatic field

Published online by Cambridge University Press:  24 July 2014

R. K. Paul*
Affiliation:
Department of Applied Physics, Birla Institute of Technology, Mesra, Deoghar Campus, Jasidih-814142, Deoghar, Jharkhand, India
*
Email address for correspondence: ratan_bit1@rediffmail.com

Abstract

The paper reports a new electrostatic-confinement-based fusion approach, where a new non-equilibrium distribution function for an ion-beam compressed by an external electric force has been derived. This distribution function allows the system to possess appreciably low and insignificant thermal energy irrespective of the energy per particle. The spread of energy among particles in the non-equilibrium state is attributed to collisions in the presence of external force, whereas for equilibrium, the spreading of energy is due to the absence of force. The reactivity for a deuterium--deuterium fusion, using the proposed distribution function, has been computed. It is shown that for initiating fusion among the particles, the fusion time is comparable with the energy confinement time of ions for beam energy greater than 160 keV. The estimated energy gain factor Q (ratio of the output fusion power to the power consumed by the system) is around 12 for beam energy 170 keV and ion density 1015 cm−3. The energy loss due to particle scattering is estimated and is taken into consideration for the estimation of energy gain. An outline of a conceptual model of a device is proposed in accordance with the proposed theory and the device is not similar to the one used conventionally in Inertial Electrostatic Confinement systems based on collisions of a beam with a reflex beam or with background gas or plasma.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bakhoum, G. E. 2009 IEEE. Trans. Plasma Sci. 37, 2090.Google Scholar
Barnes, D. C. and Nebel, R. A. 1998 Phys. Plasma 5, 2498.Google Scholar
Bhattacharjee, J. K. 2002 Statistical Physics Equilibrium and Non-Equilibrium Aspects. New Delhi, India: Allied.Google Scholar
Black, W. M. and Klevans, E. H. 1974 J. Appl. Phys. 45, 2502.Google Scholar
Bosch, H. S. and Hale, G. M. 1992 Nucl. Fusion 32, 611.Google Scholar
Bugaev, S. P., Volkov, A. M., Iskol'Dsky, A. M., Kim, A. A., Koval'Chuk, B. M., Kokshenev, V. A., Mesyats, G. A., Novikov, A. A. and Yakovlev, V. P. 1990 IEEE. Trans. Plasma. Sci. 18, 115.Google Scholar
Bussard, W. R. 1991 Fusion Technol 19, 273.Google Scholar
Catto, P. J. and Li, X. Z. 1985 Phys. Fluids 28 (1) 352.Google Scholar
Chacon, L. and Miley, G. H. 2000 Phys. Plasma 7, 4547.Google Scholar
Cohen, R. H., Bernstein, I. B., Dorning, J. J. and Rowlands, G. 1980 Nucl. Fusion 20, 1421.Google Scholar
Coraddu, M., Kaniadakis, G., Lavagno, A., Lissia, M., Mezzorani, G. and Quarati, P. 1999 Braz. J. Phys. 29, 153.Google Scholar
Elmore, W. C., Tuck, J. L. and Watson, K. M. 1959 Phys. Fluids 2, 239.Google Scholar
Emmert, G. A. and Santarius, J. F. 2010a Phys. Plasmas 17, 013502.Google Scholar
Emmert, G. A. and Santarius, J. F. 2010b Phys. Plasmas 17, 013503.Google Scholar
Evans, D. J. and Morriss, G. P. 1983 Phy. Rev. Lett. 51, 1776.Google Scholar
Goldsmith, S and Kaufman, A. S. 1967 Brit. J. Appl. Phys. 18, 1654.Google Scholar
Hinton, F. L. and Hazeltine, R. D. 1976 Rev. Mod. Phy. 48, 239.Google Scholar
Hirsch, R. L. 1967 J. Appl. Phys. 38, 4522.Google Scholar
Hirsch, R. L. 1968 Phys. Fluids 11, 2486.Google Scholar
Hori, T, Bowden, M. D., Uchino, K. and Muraoka, K. 1996 Appl. Phys. Lett. 69, 3683.Google Scholar
Hu, K. M. and Klevans, E. H. 1974 Phys. Fluids 17, 227.Google Scholar
Kaniadakis, G., Lavagno, A., Lissia, M. and Quarati, P. 1998 Physica A 261, 359.Google Scholar
Kaniadakis, G., Lavagno, A. and Quarati, P. 1996 Phys. Lett. B 369, 308.Google Scholar
Karmakar, S., Kulkarni, N. V., Sathe, V. G., Srivastava, A. K., Shinde, M. D., Bhoraskar, S. V. and Das, A. K. 2007 J. Phys. D: Appl. Phys. 40, 4829.Google Scholar
Karmakar, S., Nagar, H., Pasricha, R., Seth, T., Sathe, V. G., Bhoraskar, S. V. and Das, A. K. 2006 Nanotechnology 17, 5895.Google Scholar
Khachan, J and Collis, S. 2001 Phys. Plasma 8, 1299.Google Scholar
Khachan, J., Moore, D. and Bcsi, S. 2003 Phys. Plasmas 10, 596.Google Scholar
Kipritidis, J. and Khachan, J. 2009 Phys. Rev. E 79, 026403.Google Scholar
Loose, W. and Hess, S. 1988 Phys. Rev. A 37, 2099.Google Scholar
Nebel, R. A. and Finn, J. M. 2000 Phys. Plasma 7, 839.Google Scholar
Nevins, W. M. 1995 Phys. Plasma 2, 3804.Google Scholar
Rider, T. H. 1995 Phys. Plasma 2, 1853.Google Scholar
Rider, T. H. 1997 Phys. Plasma 4, 1039.Google Scholar
Rosenberg, M. and Nicholas, K. A. 1992 Phys. Fluids B 4, 1788.Google Scholar
Saha, M. N. and Srivastava, B. N. 1969 A Treatise on Heat. Kolkata, India: Indian Press.Google Scholar
Shrier, O., Khachan, J., Bosi, S., Fitzgerald, M. and Evans, N. 2006 Phys. Plasma 13, 012703.Google Scholar
Slaughter, D. 1983 J. Appl. Phys. 54, 1209.Google Scholar
Thorson, T. A., Durst, R. D., Fonck, R. J. and Sontag, A. C. 1998 Nucl. Fusion 38, 495.Google Scholar
Tsallis, C. and Bukman, D. J. 1996 Phys. Rev. E 54, R2197.Google Scholar
Tuft, C and Khachan, J 2010 Phys. Plasma 17, 112117.Google Scholar
Venugopalan, M. 1970 Reactions Under Plasma Conditions. New York, NY: Wiley-Interscience.Google Scholar
Wesson, J. 1987 Tokamaks. Oxford, UK: Oxford University Press.Google Scholar