Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T17:23:04.535Z Has data issue: false hasContentIssue false

Ion acoustic double layers forming behind irradiated solid objects in streaming plasmas

Published online by Cambridge University Press:  15 January 2010

W. J. MILOCH
Affiliation:
University of Oslo, Institute for Theoretical Astrophysics, Box 1029 Blindern, N-0315 Oslo, Norway
V. L. REKAA
Affiliation:
University of Oslo, Physics Department, Box 1048 Blindern, N-0316 Oslo, Norway (hans.pecseli@fys.uio.no)
H. L. PÉCSELI
Affiliation:
University of Oslo, Physics Department, Box 1048 Blindern, N-0316 Oslo, Norway (hans.pecseli@fys.uio.no)
J. TRULSEN
Affiliation:
University of Oslo, Institute for Theoretical Astrophysics, Box 1029 Blindern, N-0315 Oslo, Norway

Abstract

Small solid metallic objects in relative motion to thermal plasmas are studied by numerical simulations. We analyze supersonic motions, where a distinctive ion wake is formed behind obstacles. At these plasma drift velocities, ions enter the wake predominantly due to deflections by the electric field in the sheath around the obstacle. By irradiating the back side of the object by ultraviolet (UV) light, we can induce also an enhanced photo-electron population there. The resulting charge distribution gives rise to a pronounced local potential and plasma density well behind the object. This potential variation has the form of a three-dimensional ion acoustic double layer, containing also an ion phase space vortex. The analysis is supported also by one-dimensional numerical simulations to illustrate the importance of boundary conditions, Dirichlet and von Neumann conditions in particular.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bernstein, I. B., Greene, J. M. and Kruskal, M. D. 1957 Exact nonlinear plasma oscillations. Phys. Rev. 108, 546550.Google Scholar
Børve, S., Pécseli, H. L. and Trulsen, J. 2001 Ion phase-space vortices in 2.5-dimensional simulations. J. Plasma Phys. 65, 107129.Google Scholar
Chan, C., Cho, M., Hershkowitz, N. and Intrator, T. 1984 Laboratory evidence for ion-acoustic-type double layers. Phys. Rev. Lett. 52, 17821785.Google Scholar
Daldorff, L. K. S., Guio, P., Børve, S., Pécseli, H. L. and Trulsen, J. 2001 Ion phase space vortices in 3 spatial dimensions. Europhys. Lett. 54, 161167.CrossRefGoogle Scholar
Ergun, R. E., Andersson, L., Carlson, C. W., Newman, D. L. and Goldman, M. V. 2003 Double layers in the downward current region of the aurora. Nonlinear Process. Geophys. 10, 4552.Google Scholar
Fortov, V. E., Ivlev, A. V., Kharpak, S. A., Kharpak, A. G. and Morfill, G. E. 2005 Complex (dusty) plasmas: current status, open issues, perspectives. Phys. Rep. 421, 1103.Google Scholar
Guio, P., Børve, S., Daldorff, L. K. S., Lynov, J. P., Michelsen, P., Pécseli, H. L., Rasmussen, J. J., Saeki, K. and Trulsen, J. 2003 Phase space vortices in collisionless plasmas. Nonlinear Process. Geophys. 10, 7586.CrossRefGoogle Scholar
Guio, P., Miloch, W. J., Pécseli, H. L. and Trulsen, J. 2008a Patterns of sound radiation behind point-like charged obstacles in plasma flows. Phys. Rev. E 78, 016401.Google Scholar
Guio, P., Miloch, W. J., Pécseli, H. L. and Trulsen, J. 2008b Sound radiation from moving point-like charged particles in plasmas. In: ICTP International Workshop on the Frontiers of Modern Plasma Physics, AIP Conference Proceedings, Vol. 1061 (ed. Shukla, P. K., Eliasson, B. and Stenflo, L.). American Institute of Physics, Trieste, Italy, pp. 142151.Google Scholar
Guio, P. and Pécseli, H. L. 2005 Phase space structures generated by an absorbing obstacle in streaming plasmas. Ann. Geophysicae 23, 853865.CrossRefGoogle Scholar
Ishibashi, N. and Kitahara, K. 1992 Two-dimensional Bernstein–Greene–Kruskal solution. J. Phys. Soc. Japan 61, 27952804.CrossRefGoogle Scholar
Ishihara, O. 2007 Complex plasma: dusts in plasma. J. Appl. Phys. D 40, R121R147.CrossRefGoogle Scholar
Kato, K. 1976 Two-dimensional and three-dimensional BGK waves. J. Phys. Soc. Japan 41, 10501053.Google Scholar
Lawson, J. D. 1988 The Physics of Charged-Particle Beams, number 75 in ‘International Series of Monographs on Physics’, 2nd edn.Oxford, UK: Oxford Science Publications.Google Scholar
Miloch, W. J., Pécseli, H. L. and Trulsen, J. 2007 Numerical simulations of the charging of dust particles by contact with hot plasmas. Nonlinear Process. Geophys. 14, 575586.CrossRefGoogle Scholar
Miloch, W. J., Pécseli, H. L. and Trulsen, J. 2008a Numerical studies of ion focusing behind macroscopic obstacles in a supersonic plasma flow. Phys. Rev. E 77, 056408.CrossRefGoogle Scholar
Miloch, W. J., Vladimirov, S. V., Pécseli, H. L. and Trulsen, J. 2008b Numerical simulations of potential distribution for elongated insulating dust being charged by drifting plasmas. Phys. Rev. E 78, 036411.Google Scholar
Miloch, W. J., Vladimirov, S. V., Pécseli, H. L. and Trulsen, J. 2008c Wake behind dust grains in flowing plasmas with a directed photon flux. Phys. Rev. E 77, 065401.CrossRefGoogle ScholarPubMed
Miloch, W. J., Vladimirov, S. V., Pécseli, H. L. and Trulsen, J. 2009 Charging of insulating and conducting dust grains by flowing plasma and photoemission. New J. Phys. 11, 043005, doi:10.1088/1367-2630/11/4/043005.Google Scholar
Pécseli, H. L., Trulsen, J. and Armstrong, R. 1981 Experimental observation of ion phase-space vortices. Phys. Lett. 81A, 386390.CrossRefGoogle Scholar
Pécseli, H. L., Trulsen, J. and Armstrong, R. 1984 Formation of ion phase-space vortexes. Phys. Scri. 29, 241253.CrossRefGoogle Scholar
Piel, A. and Melzer, A. 2002 Dynamical processes in complex plasmas. Plasma Phys. Control. Fusion 44, R1R26.CrossRefGoogle Scholar
Raadu, M. A. 1989 The physics of double layers and their role in astrophysics. Phys. Rep. 178, 2597.CrossRefGoogle Scholar
Sakanaka, P. H. 1972 Beam-generated collisionless ion-acoustic shocks. Phys. Fluids 15, 13231327.Google Scholar
Schamel, H. 1986 Electron holes, ion holes and double layers. Phys. Rep. 140, 161191.Google Scholar
Schrittwieser, R., Ionita, C., Balan, P., Gstrein, R., Grulke, O., Windisch, T., Brandt, C., Klinger, T., Madani, R., Amarandei, G. and Sarma, A. K. 2008 Laser-heated emissive plasma probe. Rev. Sci. Instrum. 79, 083508.CrossRefGoogle ScholarPubMed
Shukla, P. K. and Mamun, A. A. 2002 Introduction to Dusty Plasmas. Bristol, UK: Institute of Physics Publishing.Google Scholar
Sivukhin, D. V. 1966 Coulomb collisions in a fully ionized plasma. In: Reviews of Plasma Physics, Vol. 4 (ed. Leontovich, M. A.). New York: Consultants Bureau, pp. 93241.Google Scholar
Smith, R. A. 1982 A review of double layer simulations. Phys. Scri. T2A, 238251.Google Scholar
Svenes, K. R. and Trøim, J. 1994 Laboratory simulation of vehicle-plasma interaction in low Earth orbit. Planet. Space Sci. 42, 8194.CrossRefGoogle Scholar