Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T12:07:46.605Z Has data issue: false hasContentIssue false

Kinematic and temperature restrictions on the electron cyclotron maser instability

Published online by Cambridge University Press:  13 March 2009

P. A. Robinson
Affiliation:
School of Physics, University of Sydney, NSW 2006, Australia

Abstract

The ranges of temperature T, harmonic number s and wave propagation angle θ in which the loss-cone-driven electron cyclotron instability can exist are found to be limited by opposing contributions to the growth rate from adjacent harmonics. For waves with refractive index n ⋍ 1 it is found that instability is possible only if T and s satisfy saTC with a = 2 − 2·5 and where the constant C is determined by θ and the form of the distribution function. It is argued that the corresponding restrictions for waves with very large or very small n are less severe. Instability is found to be forbidden for waves propagating outside a range |θ − 90°| < φ(s), except if θ ⋍ 0, where π(s) is independent of temperature and sin2φ(s) ⋍ s−1; this restriction limits the range of potentially unstable frequencies at a given harmonic.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Benson, R. F. 1984 J. Geophys. Res. 90, 2753.CrossRefGoogle Scholar
Bornatici, M. & Ruffina, U. 1983 Proceedings of Workshop on Mirror-Based and Field-Reversed Approaches to Magnetic Fusion, Varenna, p. 215.Google Scholar
Celata, C. M. 1985 Nucl. Fusion, 25, 35.CrossRefGoogle Scholar
Dory, R. A., Guest, G. E. & Harris, E. G. 1965 Phys. Rev. Lett. 14, 131.CrossRefGoogle Scholar
Engelmann, F. & Curatolo, M. 1973 Nucl. Fusion, 13, 497.CrossRefGoogle Scholar
Hewitt, R. G. & Melrose, D. B. 1983 Aust. J. Phys. 36, 725.CrossRefGoogle Scholar
Hewitt, R. G., Melrose, D. B. & Rönnmark, K. G. 1981 Proc. Astron. Soc. Aust. 4, 221.CrossRefGoogle Scholar
Hewitt, R. G., Melrose, D. B. & Rönnmark, K. G. 1982 Aust. J. Phys. 35, 447.CrossRefGoogle Scholar
James, R. A., Ellis, R. F., Lasnier, C. J., Casper, T. A. & Smith, G. R. 1984 Bull. Am. Phys. Soc. 29, 1187.Google Scholar
Lau, Y. Y. & Chu, K. R. 1983 Phys. Rev. Lett. 50, 243.CrossRefGoogle Scholar
Melrose, D. B. 1980 Plasma Astrophysics: Nonthermal Processes in Diffuse Magnetized Plasmas, vol. 1. Gordon and Breach.Google Scholar
Melrose, D. B. & Dulk, G. A. 1982 Astrophys. J. 259, 844.CrossRefGoogle Scholar
Melrose, D. B., Hewitt, R. G. & Dulk, G. A. 1983 J. Geophys. Res. 89, 897.CrossRefGoogle Scholar
Melrose, D. B., Rönnmark, K. G. & Hewitt, R. G. 1982 J. Geophys. Res. 87, 5140.CrossRefGoogle Scholar
Pritchett, P. L. 1984 Phys. Fluids, 27, 2393.CrossRefGoogle Scholar
Robinson, P. A. 1985 Plasma Phys. Contr. Fusion, 27, 1037.CrossRefGoogle Scholar
Robinson, P. A. 1986 J. Plasma Phys.Google Scholar
Robinson, P. A. & Melrose, D. B. 1984 Aust. J. Phys. 37, 675.CrossRefGoogle Scholar
Tsang, K. T. 1984 Phys. Fluids, 27, 1659.CrossRefGoogle Scholar
Winglee, R. M. 1983 Plasma Phys. 25, 217.CrossRefGoogle Scholar
Winglee, R. M. 1985 J. Geophys. Res. 90, 9663.CrossRefGoogle Scholar
Winglee, R. M. & Dulk, G. A. 1986 Astrophys. J. (To be published.)Google Scholar
Wong, H. K., Wu, C. S., Ke, F. J., Schneider, R. S. & Ziebell, L. F. 1982 J. Plasma Phys. 28, 503.CrossRefGoogle Scholar
Wu, C. S. & Lee, L. C. 1979 Astrophys. J. 230, 621.CrossRefGoogle Scholar
Wu, C. S. & Qiu, X. M. 1983 J. Geophys. Res. 88, 10072.CrossRefGoogle Scholar
Wu, C. S., Wong, H. K., Gorney, D. J. & Lee, L. C. 1982 J. Geophys. Res. 87, 4476.CrossRefGoogle Scholar