Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T03:40:22.064Z Has data issue: false hasContentIssue false

Landau damped kinetic Alfvén waves and coronal heating

Published online by Cambridge University Press:  23 July 2009

R. P. SHARMA
Affiliation:
Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi 110016, India (rpsharma@ces.iitd.ac.in, dynamicalfven@gmail.com)
SACHIN KUMAR
Affiliation:
Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi 110016, India (rpsharma@ces.iitd.ac.in, dynamicalfven@gmail.com)

Abstract

Some recent observations of solar corona suggest that the kinetic Alfvén waves (KAWs) turbulence may be responsible for electron acceleration in solar corona and coronal heating. In the present research, we investigate the turbulent spectra of KAW due to filamentation process in the presence of Landau damping and particle energization. We present here the numerical simulation of model equation governing the nonlinear dynamics of the KAW in the presence of Landau damping. When the ponderomotive and Joule heating nonlinearities are incorporated in the KAW dynamics, the power spectra of the turbulent field is evaluated and used for particle heating. Our results reveal the formation of damped coherent magnetic filamentary structures and the turbulent spectra. The effect of Landau damping is to make the turbulent spectra steeper. Two types of scalings k−3.6 and k−4 have been obtained. We have studied the turbulence with different initial conditions. Using the Fokker–Planck equation with the new velocity space diffusion coefficient, we find the distribution function of energetic electrons in these turbulent structures. Landau damped KAWs may be responsible for the acceleration of the energetic electrons in solar corona and coronal heating.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Wu, D. J. and Yang, L. 2006 Anisotropic and mass-dependent energization of heavy ions by kinetic Alfvén waves. Astron. Astrophys. 452, L7L10.CrossRefGoogle Scholar
[2]Gary, S. P., Skoug, R. M. and Smith, C. W. 2005 Learning about coronal heating from solar wind observations. Phys. Plasmas 12, 056 501.CrossRefGoogle Scholar
[3]Chaston, C. C., Salem, C., Bonnell, J. W., Carlson, C. W., Ergun, R. E., Strangeway, R. J. and McFadden, J. P. 2008 The turbulent Alfvénic aurora. Phys. Rev. Lett. 100, 175003.CrossRefGoogle ScholarPubMed
[4]Seyler, C. E. and Liu, K. 2007 Particle energization by oblique inertial Alfvén waves in the auroral region. J. Geophys. Res. 112, A09 302.Google Scholar
[5]Louarn, P., Wahlund, J.-E., Chust, T., de Féraudy, H. and Roux, A. 1994 Observation of kinetic Alfvén waves by the FREJA spacecraft. Geophys. Res. Lett. 21, 1847.CrossRefGoogle Scholar
[6]Chaston, C. C., Carlson, C. W., Peria, W., Ergun, R. E. and McFadden, J. P. 1999 FAST observations of inertial Alfven waves in the dayside aurora. Geophys. Res. Lett. 26, 647.CrossRefGoogle Scholar
[7]Stasiewicz, K., Bellan, P., Chaston, C., Kletzning, C., Lysak, R., Maggs, J., Pokhotelov, O., Seyler, C., Shukla, P., Stenflo, L., Streltsov, A. and Wahlund, J. E. 2000 Small scale Alfvenic structure in the aurora. Space Sci. Rev. 92, 423.CrossRefGoogle Scholar
[8]Wygant, J. R., Keiling, A., Cattell, C. A., Lysak, R. L., Temerin, M., Mozer, F. S., Kletzing, C. A., Scudder, J. D., Streltsov, V., Lotko, W. and Russell, C. T. 2002 Evidence for kinetic Alfven waves and parallel electron energization at 4-6 RE altitudes in the plasma sheet boundary layer. J. Geophys. Res. 107, 1201.Google Scholar
[9]Chaston, C. C., Peticolas, L. M., Carlson, C. W., McFadden, J. P., Mozer, F., Wilber, M., Parks, G. K., Hull, A., Ergun, R. E., Strangeway, R. J., Andre, M., Khotyaintsev, Y., Goldstein, M. L., Acuña, M., Lund, E. J., Reme, H., Dandouras, I., Fazakerley, A. N. and Balogh, A. 2005 Energy deposition by Alfvén waves into the dayside auroral oval: Cluster and FAST observations. J. Geophys. Res. 110, A02 211.Google Scholar
[10]Voitenko, M. 1998 Excitation of kinetic Alfvén waves in a flaring loop. Solar Phys. 182, 411430.CrossRefGoogle Scholar
[11]Wu, D. J. and Fang, C. 2003 Coronal plume heating and kinetic dissipation of kinetic Alfvén waves. Astrophys. J. 596, 656662.CrossRefGoogle Scholar
[12]Voitenko, M. and Goossens, M. 2004 Cross field heating of coronal ions by low frequency kinetic Alfvén waves. Astrophys. J. Lett. 605, L149L152.CrossRefGoogle Scholar
[13]Shukla, P. K., Bingham, R., Eliasson, B., Dieckmann, M. E. and Stenflo, L. 2006 Nonlinear aspects of the solar coronal heating. Plasma Phys. Control. Fusion 48, B249B255.CrossRefGoogle Scholar
[14]Wu, D. J. 2003 Model of nonlinear kinetic Alfvén waves with dissipation and acceleration of energetic electrons. Phys. Rev. E. 67, 027 402.Google ScholarPubMed
[15]Leamon, R. J., Smith, C. W., Ness, N. F. and Wong, H. K. 1999 Dissipation range dynamics: Kinetic Alfvén waves and the importance of βe. J. Geophys. Res. 104, 22 331.Google Scholar
[16]Bellan, P. M. and Stasiewicz, K. 1998 Fine-Scale cavitation of ionospheric plasma caused by Inertial Alfvén wave ponderomotive force. Phys. Rev. Lett. 80, 3523.CrossRefGoogle Scholar
[17]Shukla, P. K. and Stenflo, L. 1999 Plasma density cavitation due to inertial Alfvén wave heating. Phys. Plasmas 6, 4120.CrossRefGoogle Scholar
[18]Shukla, A. and Sharma, R. P. 2002 Mutual nonlinear interaction between two kinetic Alfvén waves and its effect on filamentation: Applications to solar wind and coronal heating. J. Geophys. Res. 107 (A11), 1338.Google Scholar
[19]Singh, H. D. and Sharma, R. P. 2006 Numerical simulation of kinetic Alfvén waves to study filament formation and their nonlinear dynamics in solar wind and corona. Phys. Plasmas 13, 012 902.CrossRefGoogle Scholar
[20]Hasegawa, A. and Chen, L. 1975 Kinetic Process of Plasma Heating Due to Alfvén Wave Excitation. Phys. Rev. Lett. 35, 370.CrossRefGoogle Scholar
[21]Champeaux, S., Passot, T. and Sulem, P. L. 1997 Alfvén wave filamentation. J. Plasma Phys. 58, 665.CrossRefGoogle Scholar
[22]Sharma, R. P. and Malik, M. 2006 Non-linear interaction of the kinetic Alfvén waves and the filamentation process in the solar wind plasma. Astron. Astrophys. 457, 675680.CrossRefGoogle Scholar
[23]Leamon, R. J., Smith, C. W., Ness, N. F., Matthaeus, W. H. and Wong, H. K. 1998 Observational constraints on the dynamics of the interplanetary magnetic field dissipation range. J. Geophys. Res. 103 (A3), 4775.CrossRefGoogle Scholar
[24]Ichimaru, S. 1973 Basic Principles of Plasma Physics. (ch. 1). Reading, MA: Benjamin.Google Scholar