Published online by Cambridge University Press: 20 June 2013
Ion-acoustic solitons in magnetized low-β plasma consisting of warm adiabatic positive and negative ions and non-thermal electrons have been studied. The reductive perturbation method is used to derive the Korteweg–de Vries (KdV) equation for the system, which admits an obliquely propagating soliton solution. It is found that due to the presence of finite ion temperature there exist two modes of propagation, namely fast and slow ion-acoustic modes. In the case of slow-mode if the ratio of temperature to mass of positive ion species is lower (higher) than the negative ion species, then there exist compressive (rarefactive) ion-acoustic solitons. It is also found that in the case of slow mode, on increasing the non-thermal parameter (γ) the amplitude of the compressive (rarefactive) soliton decreases (increases). In fast ion-acoustic mode the nature and characteristics of solitons depend on negative ion concentration. Numerical investigation in case of fast mode reveals that on increasing γ, the amplitude of compressive (rarefactive) soliton increases (decreases). The width of solitons increases with an increase in non-thermal parameters in both the modes for compressive as well as rarefactive solitons. There exists a value of critical negative ion concentration (αc), at which both compressive and rarefactive ion-acoustic solitons appear as described by modified KdV soliton. The value of αc decreases with increase in γ.