Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T14:48:58.900Z Has data issue: false hasContentIssue false

Low-dimensional relativistic degeneracy in quantum plasmas

Published online by Cambridge University Press:  22 November 2013

M. AKBARI-MOGHANJOUGHI
Affiliation:
Department of Physics, Faculty of Sciences, Azarbaijan Shahid Madani University, Tabriz 51745-406, Iran (massoud2002@yahoo.com)
A. ESFANDYARI-KALEJAHI
Affiliation:
Department of Physics, Faculty of Sciences, Azarbaijan Shahid Madani University, Tabriz 51745-406, Iran (massoud2002@yahoo.com)

Abstract

In this work we investigate the effect of relativistic degeneracy on different properties of low-dimensional quantum plasmas. Using the dielectric response from the conventional quantum hydrodynamic model, including the quantum diffraction effect (Bohm potential) on free electrons, we explore the existence of the Shukla–Eliasson attractive screening and possibility of the ion structure formation in low-dimensional, completely degenerate electron–ion plasmas. A generalized degeneracy pressure expression for arbitrary relativity parameter in two-dimensional case is derived, indicating that change in the polytropic index (change in the equation of state) for the two-dimensional quantum fluid takes place at the electron number-density of n0 ≃ 1.1 × 1020cm−2 whereas this is known to occur for the three-dimensional case in the electron density of n0 ≃ 5.9 × 1029cm−3. Also, a generalized dielectric function valid for all dimensionalities and densities of a degenerate electron gas is calculated, and distinct properties of electron–ion plasmas, such as static screening, structure factor and Thomson scattering, are investigated in terms of plasma dimensionality.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akbari-Moghanjoughi, M. 2010a Phys. Plasmas 17, 072101.CrossRefGoogle Scholar
Akbari-Moghanjoughi, M. 2010b Phys. Plasmas 17, 092304.CrossRefGoogle Scholar
Akbari-Moghanjoughi, M. 2013a Phys. Plasmas 20, 042706.CrossRefGoogle Scholar
Akbari-Moghanjoughi, M. 2013b Phys. Plasmas 20, 092902.CrossRefGoogle Scholar
CastroNeto, A. H. Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. and Geim, A. K. 2009 Rev. Mod. Phys. 81, 109.CrossRefGoogle Scholar
Chandrasekhar, S. 1939 An Introduction to the Study of Stellar Structure, Chicago, IL: University of Chicago Press, 392 pp.Google Scholar
Chandrasekhar, S. 1953 Mon. Not. R. Astron. Soc. 113, 667.Google Scholar
Chandrasekhar, S. 1984 Science, 226, 4674.CrossRefGoogle Scholar
Gardner, C. 1994 SIAM, J. Appl. Math. 54, 409.CrossRefGoogle Scholar
Glenzer, S. H., Landen, O. L., Neumayer, P., Lee, R. W., Widmann, K. and Pollaine, S. W. 2007 Phys. Rev. Lett. 98, 065002.CrossRefGoogle Scholar
Haas, F. 2011 Quantum Plasmas: An Hydrodynamic Approach. New York, NY: Springer.CrossRefGoogle Scholar
Hwang, E. H. and Das Sarma, S. 2007 Phys. Rev. B, 75, 205418.CrossRefGoogle Scholar
Kothari, D. S. and Singh, B. N. 1942, Jul. 3 Proc. R. Soc. London A Math. Phy. Sci., 180 (983), 414423.Google Scholar
Lee, G. W. and Jung, Y.-D. 2013 Phys. Plasmas 20, 062108.CrossRefGoogle Scholar
Manfredi, G. 2005 Fields Inst. Commun. 46, 263.Google Scholar
Roldán, R., Fuchs, J. N. and Goerbig, M. O. in press Collisionless hydrodynamics of doped graphene in a magnetic field. Solid State Commun. doi:10.1016/j.ssc.2013.04.011; arXiv:1305.1448; http://dx.doi.org/10.1016/j.ssc.2013.04.011.Google Scholar
Shukla, P. K. 2009 Nature Phys. 5, 92.CrossRefGoogle Scholar
Shukla, P. K. and Akbari-Moghanjoughi, M. 2013 Phys. Rev. E. 87, 043106.CrossRefGoogle Scholar
Shukla, P. K. and Eliasson, B. 2009 Rev. Mod. Phys. 83, 25.CrossRefGoogle Scholar
Shukla, P. K. and Eliasson, B. 2010 Phys. Usp. 53, 51.CrossRefGoogle Scholar
Shukla, P. K. and Eliasson, B. 2011 Rev. Mod. Phys. 83, 885.CrossRefGoogle Scholar
Shukla, P. K. and Eliasson, B. 2012 Phys. Rev. Lett. 108, 219902 (E); Shukla, P. K. and Eliasson, B. 2012 Phys. Rev. Lett. 109, 019901 (E).CrossRefGoogle Scholar