Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T13:55:11.406Z Has data issue: false hasContentIssue false

Modeling of electric arcs: A study of the non-convective case with strong coupling

Published online by Cambridge University Press:  21 March 2013

D. WRIGHT
Affiliation:
Seminar for Applied Mathematics, ETH Zürich, Rämistr. 101, 8092 Zurich, Switzerland
P. DELMONT
Affiliation:
MathCCES, RWTH Aachen University, Schinkelstr. 2, 52062 Aachen, Germany (delmont@mathcces.rwth-aachen.de)
M. TORRILHON
Affiliation:
MathCCES, RWTH Aachen University, Schinkelstr. 2, 52062 Aachen, Germany (delmont@mathcces.rwth-aachen.de)

Abstract

In this paper, we investigate a mathematical model for electric arcs. The model is based on the equations of magnetohydrodynamics, where the flow and heat transfer in a plasma is coupled to electrodynamics. Our approach neglects convection and yields a reaction–diffusion model that includes only the core phenomena of electric arcs: Ohmic heating and nonlinear electric conductivity. The equations exhibit interesting mathematical properties like non-unique steady states and instabilities that can be linked to electric arc properties. Additionally, a 3D axisymmetric simulation of the creation and extinction of an electric arc is presented based on a strongly coupled numerical algorithm for the non-convective model. The approach is especially suited for high-current arcs where strong coupling becomes necessary.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bank, R. E., Coughran, W. M., Fichtner, W., Grosse, E. H., Rose, D. J. and Smith, R. K. 1985 Transient simulation of silicon devices and circuits. IEEE Trans. Computer-Aided Des. 4, 436451.CrossRefGoogle Scholar
Cassie, A. M. 1939 Arc rupture and circuit severity. A new theory. In: Conference des Grands Reseaux Electriques, Electrical Research Association Technical Report, E.R.A. Vol. 108, Springer, 14 pp.Google Scholar
Delmont, P. and Torrilhon, M. 2012a Convective magnetohydrodynamical modeling and simulation of electric arcs. In: Europhysics Conference Abstracts Vol. 36F ISBN 2-914771-79-7. 39th EPS Conference on Plasma Physica & 16th International Congress on Plasma Physics, 2–6 July 2012, Stockholm, Sweden (ed. Ratynsakaya, S., Blomberg, L., Fasoli, A.) p. P1.138.Google Scholar
Delmont, P. and Torrilhon, M. 2012b Magnetohydrodynamical modeling and simulations of electric arc extinction in a network. In: CD-ROM Proceedings of the 6th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012) (ed. Rammerstorfer, H. J., Eberhardsteiner, F. G. and Bhm, J.). Vienna, Austria: Vienna University of Technology.Google Scholar
Finkelnburger, W. and Maecker, H. 1956 Elektrische Bögen und thermische plasmen. In: Handbuch der Physik (ed. Flügge, S.). Berlin: Springer, pp. 254440.Google Scholar
Garzon, R. D. 2002 High Voltage Circuit Breakers: Theory and Design. New York: CRC Press.Google Scholar
Gleizes, A., Gonzales, J. J. and Freton, P. 2005 Thermal plasma modelling. J. Phys. D: Appl. Phys. 38, 153183.CrossRefGoogle Scholar
Goedbloed, J. P. H. and Poedts, S. 2004 Principles of Magnetohydrodynamics With Applications to Laboratory and Astrophysical Plasmas, Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Huguenot, P. 2008 Axisymmetric high current arc simulations in generator circuit breakers based on real gas magnetohydrodynamics models. PhD thesis, ETH.Google Scholar
Kosse, S., Wendt, M., Uhrlandt, D., Weltmann, K.-D. and Franck, Ch. 2007 Simulation of moving arcs. Pulsed Power Conference pp. 1013–1017.CrossRefGoogle Scholar
Kumar, H. 2009 Three dimensional high current arc simulations for circuit breakers using real gas resistive magnetohydrodynamics. PhD thesis, ETH.Google Scholar
Maecker, H. 1951 Der elektrische lichtbogen. Ergebnisse der Exacten Naturwissenschaft 25, 293358.Google Scholar
Maximov, S., Venegas, V., Guardado, J. L. and Melgoza, E. 2009 A method for obtaining the electric arc model parameters for SF6 power circuit breakers. IEEE EUROCOM 2009 International Conference Devoted to the 150th Anniversary of Alexander Popov, St. Petersburg, Russia, 13–23 May 2009, pp. 458463. Red Hook, NY: Curren Associates.Google Scholar
Mayr, O. 1943 On the theory of electric arc and its extinction. Electrotechnische Zeitschrift ETZ 64, 645652.Google Scholar
Mayr, O. 1955 On the stability limits of switching arcs. Applied Scientific Research, Section B (Electrophysics, Acoustics, Optics, Mathematical Methods) 5, 241247.CrossRefGoogle Scholar
Raizer, Yu. P. 1991 Gas Discharge Physics. New York: Springer.CrossRefGoogle Scholar
Rieder, RW. 1967 Plasma und Lichtbogen. Berlin: Vieweg.Google Scholar
Torrilhon, M. 2007 Uniqueness and stability of a reduced arc model. Proc. Appl. Math. Mech. 7 (1), 11413011141302.CrossRefGoogle Scholar
Tseng, K.-J., Wang, Y.-M. and Vilathgamuwa, D. M. 1997 Experimentally verified hybrid cassie-mayr electric arc model for power electronic simulations. IEEE Trans. Power. Elect. 12 (3), 429437.CrossRefGoogle Scholar
Van Der Sluis, L. 2001 Transients in Power Systems. New York: John Wiley & Sons.CrossRefGoogle Scholar
Zehnder, L., Kiefer, J., Braun, D. and Schönemann, T. 2002 SF6 generator circuit-breaker system for short-circuit currents up to 200 kA. ABB Technology Review 3, 3440.Google Scholar
Zheng, S., Liu, J.-Y., Gong, Y. and Wang, X.-G. 2004 Two-dimensional numerical simulation on evolution of arc plasma. Vacuum 73, 373379.CrossRefGoogle Scholar