Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-13T10:41:50.883Z Has data issue: false hasContentIssue false

Negative pion stopping in ultra dense and hot DT targets of ICF fast ignition concern

Published online by Cambridge University Press:  12 February 2013

CLAUDE DEUTSCH
Affiliation:
LPGP (UMR-CNRS 8578) Bât. 210, Université Paris-Sud, 91405 Orsay, France (claude.deutsch@u-psud.fr)
PATRICE FROMY
Affiliation:
CRI-Orsay, Université Paris-Sud, 91405 Orsay, France

Abstract

In order to implement a Scenario of π catalysis of Deuterium–Tritium (DT) thermonuclear reactions in a dense and hot precompressed target plasma envisioned in the Intertial Confinement Fusion (ICF) fast ignition approach, we pay detailed attention to the stopping of negative pions arising from electro-disintregration of target D and T nuclei by ultra-relativistic e-beams. Emphasis is put on a mostly non-relativistic pion velocity regime (E ≤ 10 MeV).

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Deutsch, C. 1986. Inertial confinement driven by intense ion beams. Ann. Phys. Paris 11, 111.CrossRefGoogle Scholar
Deutsch, C. and Didelez, J. P. 2011. Inertial confinement fusion fast ignition with ultra-relativistic electron beam. Laser Part. Beams. 29, 3944.CrossRefGoogle Scholar
Deutsch, C., Furukawa, H., Mima, K, Murakami, M. and Nishihara, K. 1996. The interaction physics of the fast ignition concept. Phys. Rev. Lett. 77, 24832486.CrossRefGoogle Scholar
Faure, J., Glinee, Y., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J.-P., Burgy, F. and Malka, V. 2004. A laser- plasma accelerator producing monoenergetic electron beams. Nature 431, 541544.CrossRefGoogle ScholarPubMed
Fromy, P., Tashev, B. and Deutsch, C. 2010. Low-velocity ion slowing-down in strongly asymmetric and binary ionic mixtures. Europhys. Lett. 92, 15000–3 also very low velocity ion slowing down binary ionic mixtures: charge-and mass–asymmetry effects. Phys. Rev. ST Accel. Beams 13, 101302–8.CrossRefGoogle Scholar
Gershtein, S. S. and Ponomarev, L. I. 1977. μ-meson catalysis of nuclear fusion in a mixture of deuterium and tritium. Phys. Lett. B72, 8082.CrossRefGoogle Scholar
Hicks, E. P., Sudaresan, M. K. and Watson, J. P. S. 1977. Muon catalysis of hot fusion. Nature 269, 584585 also Tan, W. P. S., 1976. Muon catalyzed fusion for pellet ignition. Nature 263, 656–659.CrossRefGoogle Scholar
Jackson, J. D, 1957. Catalysis of nuclear reactions between, hydrogen isotopes by μ¯ mesons. Phys. Rev. 106, 330339.CrossRefGoogle Scholar
Minoo, H., Gombert, M. M. and Deutsch, C. 1981. Temperature-dependent Coulomb interactions in hydrogenic systems. Phys. Rev. A23, 924943 also Deutsch, C. 1977. Nodal expansion for a real matter plasma. Phys. Lett. A60, 317–318.CrossRefGoogle Scholar
Rafelski, J. and Rafelski, H. E. 1991 Muon catalyzed fusion. Adv. Mol. Opt. Phys. 29, 177217. Also Rafelski, J. and Harley, D. 1992. Muon catalyzed fusion at high density. Part. Accel. 37–38, 409–416.CrossRefGoogle Scholar
Vesman, E. 1967. Concerning one possible mechanism of production of the the mesic-molecular-ion (ddμ)+. JETP Lett. 5, 9193.Google Scholar