Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T12:08:49.075Z Has data issue: false hasContentIssue false

A new representation of relativistic wave damping above the electron-cyclotron frequency

Published online by Cambridge University Press:  13 March 2009

G. Granata
Affiliation:
Association Euratom-CEA sur la Fusion, Départment de Recherches sur la Fusion Contrôlée, Centre d'Études Nucléaires de Cadarache, F 13108 Saint Paul lez Durance Cedex, France
I. Fidone
Affiliation:
Association Euratom-CEA sur la Fusion, Départment de Recherches sur la Fusion Contrôlée, Centre d'Études Nucléaires de Cadarache, F 13108 Saint Paul lez Durance Cedex, France

Abstract

The full relativistic dielectric tensor for a Maxwellian plasma in the electron-cyclotron range of frequencies is investigated. A new representation for arbitrary values of the wave frequency and direction of propagation of the anti-Hermitian part is presented that avoids the standard expansions of the Bessel functions. A compact form of the wave damping for ω ≽ 2ωc is obtained that is useful for the investigation of synchrotron radiation in hot plasmas.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Batchelor, D. B., Goldfinger, R. C. & Weitzner, H. 1985 Phys. Fluids, 27, 2385.Google Scholar
Bekefi, G. 1966 Radiation Processes in Plasmas. Wiley.Google Scholar
Bornatici, M., Cano, R., de Barbieri, O. & Engelmann, F. 1983 Nucl. Fusion, 23, 1153.CrossRefGoogle Scholar
Bornatici, M. & Ruffina, U. 1985 Nuovo Cim. 6D, 231.CrossRefGoogle Scholar
Bornatici, M. & Ruffina, U. 1989 Phys. Fluids, B 1, 242.CrossRefGoogle Scholar
Drummond, W. E. & Rosenbluth, M. N. 1960 Phys. Fluids, 3, 45 and 491.CrossRefGoogle Scholar
Drummond, W. E. & Rosenbluth, M. N. 1961 Phys. Fluids, 4, 277.CrossRefGoogle Scholar
Erdélyi, A., Magnus, W., Oberhettinger, F. & Tricomi, F. G. 1953 Higher Transcendental Functions, vol. 2. McGraw-Hill.Google Scholar
Erdélyi, A., Magnus, W., Oberhettinger, F. & Tricomi, F. G. 1954 Tables of Integral Transforms, vol. 2. McGraw-Hill.Google Scholar
Fidone, I., Granata, G. & Meyer, R. L. 1982 Phys. Fluids, 25, 2249.CrossRefGoogle Scholar
Fidone, I., Granata, G., Ramponi, G. & Meyer, R. L. 1978 Phys. Fluids, 21, 645.CrossRefGoogle Scholar
Giruzzi, G., Fidone, I., Granata, G. & Meyer, R. L. 1984 Phys. Fluids, 27, 1704.CrossRefGoogle Scholar
Gradshteyn, I. S. & Ryzhik, I. M. 1965 Table of Integrals, Series and Products. Academic.Google Scholar
Granata, G. 1990 Report EUR-CEA-FC-1401.Google Scholar
Krivenski, V. 1988 Thèse de Doctorat d'État ès Sciences Physiques, Université de Nancy I.Google Scholar
Nassri, A. & Heindler, M. 1986 Phys. Fluids, 29, 3275.CrossRefGoogle Scholar
Rosenbluth, M. N. 1970 Nucl. Fusion, 10, 340.CrossRefGoogle Scholar
Shkarofsky, I. P. 1986 J. Plasma Phys. 35, 319.CrossRefGoogle Scholar
Tamor, S. 1978 Nucl. Fusion, 18, 229.CrossRefGoogle Scholar
Trubnikov, B. A. 1958 Soviet Phys. Dokl. 3, 136.Google Scholar
Trubnikov, B. A. 1959 Plasma Physics and the Problem of Controlled Thermonuclear Reactions, vol. 3, p. 122. Pergamon.Google Scholar
Trubnikov, B. A. 1979 Reviews of Plasma Physics, vol. 7 (ed. Lecntovich, M. A.), p. 345. Consultants Bureau.Google Scholar
Trubnikov, B. A. & Kudryavtsev, V. S. 1958 Proceedings of the 2nd United Nations International Conference on the Peaceful Uses of Atomic Energy, vol. 31, p. 93. United Nations.Google Scholar
Watson, G. N. 1944 A Treatise on the Theory of Bessel Functions. Cambridge University Press.Google Scholar
Yoon, P. H. & Davidson, R. C. 1990 J. Plasma Phys. 32, 269.CrossRefGoogle Scholar