Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-11T09:37:59.869Z Has data issue: false hasContentIssue false

Nonlinear dust-acoustic wave propagation in a Lorentzian dusty plasma in presence of negative ions

Published online by Cambridge University Press:  22 October 2018

Raicharan Denra
Affiliation:
Department of Applied Mathematics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata-700009, India
Samit Paul*
Affiliation:
Department of Applied Mathematics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata-700009, India
Uttam Ghosh
Affiliation:
Department of Applied Mathematics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata-700009, India
Susmita Sarkar
Affiliation:
Department of Applied Mathematics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata-700009, India
*
Email address for correspondence: samitpaul4@gmail.com

Abstract

In this paper we have studied the effect of the density and temperature of negative ions on the nonlinear dust-acoustic wave propagation in a Lorentzian dusty plasma. We have considered both adiabatic and non-adiabatic dust charge variation. The presence of both low and high populations of negative ions are considered. Separate models have been developed because the two populations give rise to opposite polarity of grain charges. In both models electrons are assumed to follow a kappa velocity distribution while the positive and negative ions satisfy a Maxwellian velocity distribution. Adiabatic dust charge variation shows the propagation of a dust-acoustic soliton in cases of both a high and low population of negative ions whose amplitude depends on the negative ion temperature and negative ion density. On the other hand, non-adiabatic dust charge variation generates a stable oscillatory dust-acoustic shock when the negative ion population is low. An unstable potential has been predicted from this analysis when the negative ion population is high and the dust charge variation is non-adiabatic.

Type
Research Article
Copyright
© Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adhikary, N. C., Misra, A. P., Deka, M. K. & Dev, A. N. 2017 Nonlinear dust-acoustic solitary waves and shocks in dusty plasmas with a pair of trapped ions. Phys. Plasmas 24, 073703.Google Scholar
Amour, R. & Tribeche, M. 2010 Variable charge dust acoustic solitary waves in a dusty plasma with a q-nonextensive electron velocity distribution. Phys. Plasmas 17, 063702.Google Scholar
Amour, R. & Tribeche, M. 2014 Collisionless damping of dust-acoustic waves in a charge varying dusty plasma with nonextensive ions. Phys. Plasmas 21, 123709.Google Scholar
Asgari, H., Muniandy, S. V. & Wong, C. S. 2011 The role of dust charging frequency in the linear and nonlinear propagation of dust acoustic waves. Wave Motion 48, 268274.Google Scholar
Baluku, T. & Helberg, M. A. 2008 Dust acoustic solitons in plasmas with kappa-distributed electrons and/or ions. Phys. Plasmas 15, 123705.Google Scholar
Barkan, A., Merlino, R. L. & D’Angelo, N. 1995 Laboratory observation of the dust-acoustic wave mode. Phys. Plasmas 2, 3563.Google Scholar
Bernhardt, P. A. 1984 Chemistry and dynamics of SF6 injections into the F region. J. Geophys. Res. 89 (A6), 39293937.Google Scholar
Chabert, P., Lichtenberg, A. J. & Lieberman, M. A. 2007 Theory of a double-layer in an expanding electronegative plasma. Phys. Plasmas 14, 093502.Google Scholar
Chaizy, P. H., Reme, H., Sauvaud, J. A., Duston, C., Lin, R. P., Larson, E., Mitchell, D. L., Anderson, K. A., Carlson, C. W., Korth, A. et al. 1991 Negative ions in the coma of comet Halley. Nature (London) 349, 393396.Google Scholar
Chow, V. W., Mendis, D. A. & Rosenberg, M. 1993 Role of grain size and particle velocity distribution in secondary electron emission in space plasmas. J. Geophys. Res. 98, 19065.Google Scholar
Coates, J., Crary, F. J., Lewis, G. R., Young, D. T., Waite, J. H. & Sittler, E. C. 2007 Discovery of heavy negative ions in Titan’s ionosphere. Geophys. Res. Lett. 34, 22103.Google Scholar
Denra, R., Paul, S. & Sarkar, S. 2016 Characteristics of nonlinear dust acoustic waves in a Lorentzian dusty plasma with effect of adiabatic and nonadiabatic grain charge fluctuation. AIP Adv. 6, 125045.Google Scholar
Donley, J. L. 1969 The thermal ion and electron trap experiments on the explorer XXXI satellite. Proc. IEEE 57, 10611063.Google Scholar
EL-Labany, S. K. & EL-Taibany, W. F. 2004 Effect of dust-charge variation on dust acoustic solitary waves in a dusty plasma with trapped electrons. J. Plasma Phys. 70 (1), 6987.Google Scholar
Geortz, C. K. 1989 Dusty plasmas in the solar system. Rev. Geophys. 27, 271292.Google Scholar
Ghosh, S., Ehsan, Z. & Murtaza, G. 2008 Dust acoustic shock wave in electronegative dusty plasma: roles of weak magnetic field. Phys. Plasmas 15, 023701.Google Scholar
Ghosh, S., Sarkar, S., Khan, M. & Gupta, M. R. 2001 Small-amplitude nonlinear dust acoustic wave a magnetized dusty plasma with charge fluctuation. IEEE Trans. Plasma Sci. 29 (3), 409416.Google Scholar
Ghosh, S., Sarkar, S., Khan, M. & Gupta, M. R. 2002 Effect of nonadiabatic dust charge variation on nonlinear dust acoustic waves in presence of nonisothermal ions in a dusty plasma. Phys. Plasmas 9, 11501157.Google Scholar
Ghosh, S., Sarkar, S., Khan, M., Avinash, K. & Gupta, M. R. 2003 Dust acoustic shock wave at high dust density. Phys. Plasmas 10, 977983.Google Scholar
Gogoi, L. B. & Deka, P. N. 2017 Propagation of dust acoustic solitary waves in inhomogeneous plasma with dust charge fluctuations. Phys. Plasmas 3, 033708.Google Scholar
Gupta, M. R., Sarkar, S., Ghosh, S., Debnath, M. & Khan, M. 2001 Effect of nonadiabaticity of dust charge variation on dust acoustic waves: generation of dust acoustic shock waves. Phys. Rev. E 63, 046406.Google Scholar
Kim, S.-H. & Merlino, R. L. 2007 Electron attachment to $\text{C}_{7}\text{F}_{14}$ and $\text{SF}_{6}$ in a thermally ionized potassium plasma. Phys. Rev. E 76, 035401(R).Google Scholar
Mace, R. L. & Hellberg, M. A. 2009 A new formulation and simplified derivation of the dispersion function for a plasma with a kappa velocity distribution. Phys. Plasmas 16, 072113.Google Scholar
Mace, R. L. & Hellberg, M. A. 1995 A dispersion function for plasmas containing superthermal particles. Phys. Plasmas 2, 2098.Google Scholar
Massey, H. 1976 Negative Ions, 3rd edn. Cambridge University Press.Google Scholar
Merlino, R. L. & Kim, S.-H. 2008 Measurement of the electron attachment rates for $\text{SF}_{6}$ and $\text{C}_{7}\text{F}_{14}$ at $\text{Te}=0.2~\text{eV}$ in a magnetized Q machine plasma. J. Chem. Phys. 129, 224310.Google Scholar
Pajouh, H. H. & Afshari, N. 2015 Jeans instability of a dusty plasma with dust charge variations. Phys. Plasmas 22, 093707.Google Scholar
Pego, R. L., Smereka, P. & Weinstein, M. I. 1993 Oscillatory instability of traveling waves for a KdV–Burgers equation. Physica D 67 (1–3, 15), 4565.Google Scholar
Pierrard, V. & Lazar, M. 2010 Kappa distributions: theory and applications in space plasmas. Sol. Phys. 267, 153174.Google Scholar
Prangé, R. & Crifo, J.-F. 1977 Suprathermal particle observations in the nighttime ionosphere at low latitudes. Geophys. Res. Lett. 4 (4), 141144.Google Scholar
Rao, N. N., Shukla, P. K. & Yu, M. Y. 1990 Dust acoustic waves in dusty plasmas. Planet. Space Sci. 38, 543546.Google Scholar
Rapp, M., Hedin, J., Strelnikova, I., Friedrich, M., Gumbel, J. & Lübken, F.-J. 2005 Observations of positively charged nanoparticles in the nighttime polar mesosphere. Geophys. Res. Lett. 32, L23821.Google Scholar
Shahmansouri, M. & Tribeche, M. 2013 Nonextensive dust acoustic shock structures in complex plasmas. Astrophys. Space Sci. 346, 165.Google Scholar
Shan, D. W. 2004 Effect of adiabatic variation of dust charges on dust acoustic solitary waves in magnetized dusty plasmas. Chin. Phys. 13 (5), 598.Google Scholar
Shan, D. W., , K.-P. & Zhao, J.-B. 2001 Hot dust acoustic solitary waves in dust plasma with variable dust charge. Chin. Phys. Lett. 18 (8), 1088.Google Scholar
Shukla, P. K. & Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. IOP.Google Scholar
Singh, S. V. & Rao, N. 1998 Adiabatic dust-acoustic waves with dust-charge fluctuations. J. Plasma Phys. 60 (3), 541550.Google Scholar
Swider, W. 1988 Electron loss and the determination of electron concentrations in the D-region. In Ionospheric Modeling, pp. 403414. Birkhauser Basel.Google Scholar
Tribeche, M., Houili, H. & Zerguini, T. H. 2002 Nonlinear oscillations in dusty plasmas with variable charges on dust particles. Phys. Plasmas 9, 419.Google Scholar
Wang, Z.-X., Wang, X., Ren, L.-W., Liu, J.-Y. & Liu, Y. 2005 Effect of negative ions on dust-acoustic soliton in a dusty plasma. Phys. Lett. A 339, 96102.Google Scholar
Willmore, A. P. 1970 Electron ion temperatures in the ionosphere. Space Sci. Rev. 11 (5), 607670.Google Scholar
Xie, B. & He, K. 1999 Dust-acoustic solitary waves and double layers in dusty plasma with variable dust charge and two-temperature ions. Phys. Plasmas 6, 3808.Google Scholar
Xie, B. S. & Yu, M. Y. 2000 Dust-acoustic waves in strongly coupled plasmas with variable dust charge. Phys. Plasmas 7, 3137.Google Scholar
Xie, B., He, K. & Huang, Z. 1998 Effect of adiabatic variation of dust charges on dust-acoustic solitary waves. Phys. Lett. A 247 (6), 403409.Google Scholar