Published online by Cambridge University Press: 21 July 2014
Nonlinear interaction between Langmuir waves and Electron Acoustic Wave (EAW) is being studied in a warm magnetized plasma in presence of two intermingled fluids, hot electrons, and cold electrons while ions forming static background. Two-fluid, two-timescale theory is performed to derive modified Zakharov's equations in a magnetized plasma. These coupled equations describe low-frequency response of electron density due to high-frequency electric field along with magnetic field perturbations. Linear analysis shows coupling between acoustic mode, upper hybrid mode, and cyclotron modes. These modes are found to be modified due to the presence of two electron components. These equations are significant in the context of weak and strong turbulence.