Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T04:37:52.105Z Has data issue: false hasContentIssue false

Nonlinear interaction of electrostatic surface waves in a semi-infinite plasma. Part 2. Time-dependent solutions to the coupled mode equations

Published online by Cambridge University Press:  13 March 2009

V. Atanassov
Affiliation:
Faculty of Physics, Sofia University, 1126 Sofia, Bulgaria
E. Mateev
Affiliation:
Faculty of Physics, Sofia University, 1126 Sofia, Bulgaria
I. Zhelyazkov
Affiliation:
Faculty of Physics, Sofia University, 1126 Sofia, Bulgaria

Abstract

The coupled mode equations which govern the nonlinear interaction of three electrostatic high-frequency surface waves and a low-frequency density perturbation are analysed considering time-dependent solutions only. We show the existence of a filamentation instability in the static limit for the low-frequency density perturbation. In the opposite case (density perturbation close to the lowfrequency surface wave resonance) we arrive at a decay instability where only surface waves take part. The parametric approximation (growth rate and threshold) as well as the nonlinear evolution of both types of instabilities are studied.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Afanass'ev, Yu V., Bassov, N. G., Krokhin, O. N., Pustovalov, V. V., Silin, V. P., Tikhonchuk, V. T. & Shikanov, A. S. 1978 Interaction of Powerful Laser Radiation with a Plasma. VINITI.Google Scholar
Aliev, Yu. M., Gradov, O. M. & Kirii, A. Yu. 1972 Zh. Eksp. Teor. Fiz. 63, 112.Google Scholar
Anderson, D. & Bondeson, A. 1977 Phys. Fluids, 20, 1072.CrossRefGoogle Scholar
Armstrong, J. A., Bloembergen, N., Ducuing, J. & Pershan, P. S. 1962 Phys. Rev 127, 1918.CrossRefGoogle Scholar
Atanassov, V., Mateev, E. & Zhelyazkov, I. 1981 J. Plasma Phys.Google Scholar
Bingham, R. & Lashmore-Davies, C. N. 1979 a Plasma Phys. 21, 433.CrossRefGoogle Scholar
Bingham, R. & Lashmore-Davies, C. N. 1979 b J. Plasma Phys. 21, 51.CrossRefGoogle Scholar
DuBois, D. F. & Goldman, M. V. 1967 Phys. Rev. Lett. 19, 1105.CrossRefGoogle Scholar
Kaw, P., Schmidt, G. & Wilcox, T. 1973 Phys. Fluids, 16, 1522.CrossRefGoogle Scholar
Nishikawa, K. 1968 J. Phys. Soc. Japan, 24, 916, 1152.CrossRefGoogle Scholar
Oraevskii, V. N. & Sagdeev, R. Z. 1962 Zh. Tekh. Fiz. 32, 1291.Google Scholar
Silin, V. P. 1973 Parametric Effect of High Power Radiation on a Plasma. Nauka.Google Scholar
Vedenov, A. A. & Rudakov, L. I. 1964 Dokl. Akad. Nauk. SSSR, 159, 767.Google Scholar
Weiland, J. & Wilhelmsson, H. 1977 Coherent Nonlinear Interaction of Waves in Plasmas. Pergamon.Google Scholar