Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-29T04:05:35.808Z Has data issue: false hasContentIssue false

Nonlinear ion acoustic excitations in relativistic degenerate, astrophysical electron–positron–ion plasmas

Published online by Cambridge University Press:  28 May 2013

ATA-UR RAHMAN
Affiliation:
Institute of Physics and Electronics, University of Peshawar, Peshawar 25000, Pakistan (ata797@yahoo.com) National Centre for Physics, QAU Campus, Shahdrah Valley Road, Islamabad 44000, Pakistan
S. ALI
Affiliation:
National Centre for Physics, QAU Campus, Shahdrah Valley Road, Islamabad 44000, Pakistan
A. MUSHTAQ
Affiliation:
National Centre for Physics, QAU Campus, Shahdrah Valley Road, Islamabad 44000, Pakistan Department of Physics, Abdul Wali Khan University, Mardan 23200, Pakistan
A. QAMAR
Affiliation:
Institute of Physics and Electronics, University of Peshawar, Peshawar 25000, Pakistan (ata797@yahoo.com) National Centre for Physics, QAU Campus, Shahdrah Valley Road, Islamabad 44000, Pakistan

Abstract

The dynamics and propagation of ion acoustic (IA) waves are considered in an unmagnetized collisionless plasma, whose constituents are the relativistically degenerate electrons and positrons as well as the inertial cold ions. At a first step, a linear dispersion relation for IA waves is derived and analysed numerically. For nonlinear analysis, the reductive perturbation technique is used to derive a Korteweg–deVries equation, which admits a localized wave solution in the presence of relativistic degenerate electrons and positrons. It is shown that only compressive IA solitary waves can propagate, whose amplitude, width and phase velocity are significantly modified due to the positron concentration. The latter also strongly influences all the relativistic plasma parameters. Our present analysis is aimed to understand collective interactions in dense astrophysical objects, e.g. white dwarfs, where the lighter species electrons and positrons are taken as relativistically degenerate.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akbari-Moghanjoughi, M. 2010 Effects of ion-temperature on propagation of the large amplitude ion acoustic solitons in degenerate electron-positron-ion plasmas. Phys. Plasmas 17, 082315.CrossRefGoogle Scholar
Ali, S., Moslem, W. M., Shukla, P. K. and Schlickeiser, R. 2007 Linear and nonlinear ion acoustic waves in an unmagnetized electron-positron-ion quantum plasma. Phys. Plasmas 14, 082307.CrossRefGoogle Scholar
Berezhiani, V., Tskhakaya, D. D. and Shukla, P. K. 1992 Pair production in a strong wake field driven by an intense short laser pulse. Phys. Rev. A 46, 6608.CrossRefGoogle Scholar
Burns, M. L. 1983 Positron-Electron Pairs in Astrophysics (ed. Burns, M. L., Harding, A. K. and Ramaty, R.). Melville, NY: American Institute of Physics.Google Scholar
Chandrasekhar, S. 1931 The Density of White Dwarf Stars. Philos. Mag. 11, 592.CrossRefGoogle Scholar
Chandrasekhar, S. 1939 An Introduction to the Study of Stellar Structure. Chicago: University of Chicago Press.Google Scholar
El-Taibany, W. F. and Mamun, A. A. 2012 Nonlinear electromagnetic perturbations in a degenerate ultrarelativistic electron positron plasma. Phys. Rev. E 85, 026406.Google Scholar
Esfandyaari-Klajahi, A., Akbari-Moghanjoughi, M. and Saberian, E. 2010 Relativistic Degeneracy Effect on Propagation of Arbitrary Amplitude Ion-Acoustic Solitons in Thomas Fermi Plasmas. Plasma Fusion Res. 5, 045.Google Scholar
Fortov, V. E., Iakubov, I. T. and Khrapak, A. G. 2006 Physics of Strongly Coupled Plasma. Oxford: Clarendon Press.CrossRefGoogle Scholar
Gill, R. D. 1993 Generation and loss of runaway electrons following disruptions in JET. Nucl. Fusion 33, 1613.CrossRefGoogle Scholar
Haider, M. M., Akter, S., Duha, S. S. and Mamun, A. A. 2012 Multi dimensional instability of electrostatic solitary waves in ultrarelativistic degenerate electron-positron-ion plasmas. Cent. Eur. J. Phys. 10, 1168.Google Scholar
Helander, P. and Ward, D. J. 2003 Positron Creation and Annihilation in Tokamak Plasmas with Runaway Electrons. Phys. Rev. Lett. 90, 135004.CrossRefGoogle ScholarPubMed
Kashiyama, K., Ioka, K. and Kawanaka, N. 2011 White dwarf pulsars as possible cosmic ray electron-positron factories. Phys. Rev. D 83, 023002.CrossRefGoogle Scholar
Khan, S. A. 2012a Coupled modes in magnetized dense plasma with relativistic-degenerate electrons. Phys. Plasmas 19, 014506.CrossRefGoogle Scholar
Khan, S. A. 2012b Low frequency collective modes in dense relativistic-degenerate strongly coupled plasma. Astrophys. Space Sci. 340, 71.CrossRefGoogle Scholar
Khan, S. A. and Masood, W. 2008 Linear and nonlinear quantum ion-acoustic waves in dense magnetized electron-positron-ion plasmas. Phys. Plasmas 15, 062301.CrossRefGoogle Scholar
Koester, D. and Chanmugam, G. 1990 Physics of white dwarf stars. Rep. Prog. Phys. 53, 837.CrossRefGoogle Scholar
Kotani, T., Kawai, N., Matsuoka, M. and Brinkmann, W. 1996 Iron-line diagnostics of the jets of SS 433. Publ. Astron. Soc. Japan 48, 619.CrossRefGoogle Scholar
Lai, D. 2001 Matter in strong magnetic fields. Rev. Mod. Phys. 73, 629.CrossRefGoogle Scholar
Mamun, A. A. and Shukla, P. K. 2010a Solitary waves in an ultrarelativistic degenerate dense plasma. Phys. Plasmas 17, 104504.CrossRefGoogle Scholar
Mamun, A. A. and Shukla, P. K. 2010b Arbitrary amplitude solitary waves and double layers in an ultrarelativistic degenerate dense dusty plasma. Phys. Lett. A 374, 4238.CrossRefGoogle Scholar
Masood, W. and Eliasson, B. 2011 Electrostatic solitary waves in a quantum plasma with relativistically degenerate electrons Phys. Plasmas 18, 034503.CrossRefGoogle Scholar
Michel, F. C. 1982 Theory of pulsar magnetospheres. Rev. Mod. Phys. 54, 1.CrossRefGoogle Scholar
Michel, F. C. 1991 Theory of Neutron Star Magnetosphere. Chicago: Chicago University Press.Google Scholar
Miller, H. R. and Witta, P. J. 1987 Active Galactic Nuclei. Berlin: Springer.Google Scholar
Moslem, W. M. 2012 Self-similar expansion of white dwarfs. Astrophys. Space Sci. 342, 351.CrossRefGoogle Scholar
Popel, S. I., Vladimirov, S. V. and Shukla, P. K., 1995 Ion acoustic solitons in electron-positron-ion plasmas. Phys. Plasmas 2, 716.CrossRefGoogle Scholar
Rees, M. J. 1983 The Very Early Universe (ed. Gibbons, G. W., Hawking, S. W. and Siklas, S.). Cambridge: Cambridge University Press.Google Scholar
Roy, N., Tasnim, S. and Mamun, A. A. 2012 Solitary waves and double layers in an ultrarelativistic degenerate dusty electron-positron-ion plasma. Phys. Plasmas 19, 033705.CrossRefGoogle Scholar
Sabry, R., Moslem, W. M., Haas, F., Ali, S. and Shukla, P. K. 2008 Nonlinear structures: Explosive, soliton, and shock in a quantum electron-positron-ion magnetoplasma. Phys. Plasmas 15, 122308.CrossRefGoogle Scholar
Sabry, R., Moslem, W. M. and Shukla, P. K. 2009 Planar and nonplanar ion acoustic envelope solitary waves in a very dense electron-positron-ion plasma. Eur. Phys. J. D 51, 233.CrossRefGoogle Scholar
Sahu, B. and Ghosh, N. K. 2013 Kadomstev-Petviashvili solitons in quantum plasmas. Astrophys. Space Sci. 343, 289.CrossRefGoogle Scholar
Shapiro, S. L. and Teukolsky, S. A. 1983 Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects. New York: John Wiley.CrossRefGoogle Scholar
Svensson, R. 1982 Electron positron pair equilibria in relativistic plasmas. Astrophys. J. 258, 335.CrossRefGoogle Scholar
Tandberg-Hansen, E. and Emslie, A. G. 1988 The Physics of Solar Flares. Cambridge: Cambridge University Press.Google Scholar
Washimi, H. and Taniuti, T. 1966 Propagation of Ion Acoustic Solitary Waves of Small Amplitude. Phys. Rev. Lett. 17, 996.CrossRefGoogle Scholar
Woosley, S. E. and Baron, E. 1992 The collapse of white dwarfs to neutron stars. Astrophys. J. 391, 228.CrossRefGoogle Scholar
Yoshino, R., Tokuda, S. and Kawano, Y. 1999 Generation and termination of runaway electrons at major disruptions in JT-60U. Nucl. Fusion 39, 151.CrossRefGoogle Scholar
Zeba, I., Moslem, W. M. and Shukla, P. K. 2012 Ion solitary pulses in warm plasmas with ultrarelativistic degenerate electrons and positrons. Astrophys. J. 750, 72.CrossRefGoogle Scholar