Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T23:02:21.629Z Has data issue: false hasContentIssue false

Nonlinear ion–acoustic waves in an inhomogeneous plasma with non-thermal distribution of electrons

Published online by Cambridge University Press:  18 February 2015

S. V. Singh*
Affiliation:
Indian Institute of Geomagnetism, Navi Mumbai, Maharashtra, India
*
Email address for correspondence: satyavir@iigs.iigm.res.in

Abstract

In the Earth's magnetosphere, the boundary layer regions are the sources for inhomogeneous plasmas and are natural laboratories to study wave phenomena. In these regions, particles distributions also differ from Maxwellian and are found to be non-thermal. Therefore, amplitude of the waves propagating through these regions can vary differently compared to the homogeneous plasmas. In this study, propagation of ion–acoustic waves (IAWs) in an inhomogeneous, warm electron-ion plasma is examined. The electrons are considered to be having non-thermal Cairn's type distribution and ions follow the fluid dynamical equations. Further, inhomogeneity is assumed in equilibrium density of the electrons and ions. The evolution of the nonlinear IAWs is governed by the Korteweg–de Vries (KdV) equation with variable coefficients. Analytical solution of the KdV equation shows that for a cold ion plasma and non-thermal electrons, the amplitude and the width of the nonlinear IAWs decreases and increases, respectively with the inclusion of the non-thermal distribution of electrons. It is interesting to note that nonlinear IAWs in this model can not propagate for whole range of non-thermal parameter, α. The novel result of this study is that for nonlinear IAWs to propagate in the inhomogeneous two component plasma with ions and non-thermal electrons, the non-thermal parameter, α ⩽ 0.155. Results from our study may have impact on the propagation of the IAWs in the boundary layer regions of the Earth's magnetosphere where density inhomogeneities are appreciable.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Asano, N. 1974 Prog. Theor. Phys. Suppl. 55, 52.CrossRefGoogle Scholar
Bougert, J. 2008 Space Sci. Rev. 136, 487.CrossRefGoogle Scholar
Cairns, R. A., Mamum, A. A., Bingham, R., Boström, R., Dendy, R. O., Nairn, C. M. C. and Shukla, P. K. 1995 Geophys. Res. Lett. 22, 2709.CrossRefGoogle Scholar
Chauhan, S. S. and Dahiya, R. P. 1997 Phys. Lett. A 234, 108.CrossRefGoogle Scholar
Chauhan, S. S., Dahiya, R. P., Yi, Seungjun and Lonngren, Karl E. 1997 IEEE Trans. Plasma Sci. 25, 1425.CrossRefGoogle Scholar
Collis, P. N., Hggstrom, L., Kaila, K. and Rietveld, M. T. 1991 Geophys. Res. Lett. 18, 1031.CrossRefGoogle Scholar
Dahiya, R. P., John, P. I. and Saxena, Y. C. 1978 Phys. Lett. A 65, 323.CrossRefGoogle Scholar
Das, G. C. and Singh, S. S. 1992 IEEE Trans. Plasma Sci. 20, 13.CrossRefGoogle Scholar
Davidson, R. C. 1972 Methods in Nonlinear Plasma Theory. New York: Academic.Google Scholar
Foster, J. C., del Pozo, C. and Groves, K. 1988 Geophys. Res. Lett. 15, 60.CrossRefGoogle Scholar
Garcia, G. and Forme, F. 2006 Ann. Geophys. 24, 2391.CrossRefGoogle Scholar
Gell, Y. and Gomberoff, L. 1977 Phys. Lett. A 60, 125.CrossRefGoogle Scholar
Hoffman, R. A. 1993 Auroral Plasma Daynamics, Geophysical Monograph, Vol. 80 (ed. Lysak, R. L.). Washington D. C: American Geophysical Union.Google Scholar
Ikezi, H. 1973 Phys. Fluids 16, 1668.CrossRefGoogle Scholar
Ikezi, H., Taylor, R. J. and Baker, D. R. 1970 Phys. Rev. Lett. 25, 11.CrossRefGoogle Scholar
Imen, K. and Kuehl, H. H. 1987 Phys. Fluids 30, 73.CrossRefGoogle Scholar
Jeffery, A. and Kakutani, T. 1972 Soc. Ind. Appl. Math. (SIAM) Rev. 14, 582.Google Scholar
Kuehl, H. H. 1983 Phys. Fluids 26, 1577.CrossRefGoogle Scholar
Kuehl, H. H. and Imen, K. 1985 Phys. Fluids 28, 2375.CrossRefGoogle Scholar
Kumar, R. and Malik, H. K. 2011 J. Phys. Soc. Japan 80, 044 502.CrossRefGoogle Scholar
Kumar, R. and Malik, H. K. 2013 Phys. Plasmas 20, 032 112.CrossRefGoogle Scholar
Kumar, R., Malik, H. K. and Singh, K. 2012 Phys. Plasmas 19, 012 114.CrossRefGoogle Scholar
Leubner, M. P. 2000 Planet. Space Sci. 48, 133.CrossRefGoogle Scholar
Leubner, M. P. 2003 Space Sci. Rev. 107, 369.CrossRefGoogle Scholar
Lockwood, M., Bromage, B. J. I., Willis, D. M., Horne, R. B. and St-Maurice, J.-P. 1987 Geophys. Res. Lett. 14, 111.CrossRefGoogle Scholar
Ma, Chun-Yu and Summers, D. 1998 Geophys. Res. Letts 25, 40994102.CrossRefGoogle Scholar
Malik, H. K. 1995 IEEE Trans. Plasma Sci. 23, 813.CrossRefGoogle Scholar
Malik, H. K. 1996 Phys. Rev. E 54, 5844.CrossRefGoogle Scholar
Malik, H. K. 2007 Phys. Letts. A 365, 224.CrossRefGoogle Scholar
Malik, H. K. 2008 Phys. Plasmas 15, 072 105.CrossRefGoogle Scholar
Malik, H. K. and Dahiya, R. P. 1994 Phys. Plasmas 1, 2872.CrossRefGoogle Scholar
Marsch, E. and Tu, C.-Y. 2001 J. Geophys. Res. 106, 227.CrossRefGoogle Scholar
Menietti, J. D. and Smith, M. F. 1993 J. Geophys. Res. 98, 11 391.Google Scholar
Nishida, Y. 1984 Phys. Fluids 27, 2176.CrossRefGoogle Scholar
Nishikawa, K. and Kaw, P. K. 1974 Phys. Lett. 50A, 445.Google Scholar
Popa, G. and Oertl, M. 1983 Phys. Lett. 98A, 110.CrossRefGoogle Scholar
Rao, N. N. and Varma, R. K. 1978 Pramana 10, 247.CrossRefGoogle Scholar
Rao, N. N. and Varma, R. K. 1979 Phys. Lett. A 70, 9.CrossRefGoogle Scholar
Rietveld, M. T., Collis, P. N. and St.-Maurice, J.-P. 1991 J. Geophys. Res. 96, 19 291.CrossRefGoogle Scholar
Sagdeev, R. Z. 1966 Reviews of Plasma Physics (ed. Leontovich, M. A.). New York: Consultant Bureau.Google Scholar
Sakanaka, P. H. 1972 Phys. Fluids 15, 304.CrossRefGoogle Scholar
Shapiro, V. D., Soloviev, G. I., Dawson, J. M. and Bingham, R. 1995 Phys. Plasmas 2, 516.CrossRefGoogle Scholar
Singh, D. K. and Malik, H. K. 2006 Phys. Plasmas 13, 082 104.CrossRefGoogle Scholar
Singh, S. and Dahiya, R. P. 1989 J. Plasma Physics 41, 185.CrossRefGoogle Scholar
Singh, S. V. and Lakhina, G. S. 2004 Nonl. Proc. Geophys. 11, 275.CrossRefGoogle Scholar
Tappert, F. 1972 Phys. Fluids 15, 2446.CrossRefGoogle Scholar
Tsallis, C. 1988 J. Stat. Phys. 52, 479.CrossRefGoogle Scholar
Vasyliunas, V. M. 1968 J. Geophys. Res. 73, 2839.CrossRefGoogle Scholar
Verheest, F. and Pillay, S. R. 2008 Phys. Plasmas 15, 013 703.CrossRefGoogle Scholar
Vinäs, A. F., Wong, H. K. and Klimas, A. J. 2000 Astrophys. J. 528, 509.CrossRefGoogle Scholar
Washimi, H. and Taniuti, T. 1966 Phys. Rev. Lett. 17, 996.CrossRefGoogle Scholar
Zabusky, N. J. and Kruskal, M. D. 1965 Phys. Rev. Lett. 15, 240.CrossRefGoogle Scholar
Zaslavsky, A., Volokitin, A. S., Krasnoselskikh, V. V., Maksimovic, M. and Bale, S. D. 2010 J. Geophys. Res. 115, A08 103.CrossRefGoogle Scholar
Ziebell, L. F., Yoon, P. H., Pavan, J. and Gaelzer, R. 2011 J. Geophys. Res. 116, A03 320.CrossRefGoogle Scholar