Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T13:58:16.951Z Has data issue: false hasContentIssue false

Nonlinear waves and instabilities leading to secondary reconnection in reconnection outflows

Published online by Cambridge University Press:  14 February 2018

Giovanni Lapenta*
Affiliation:
Center for Mathematical Plasma Astrophysics, Department of Mathematics, KULeuven Belgium, 200B Celestijnenlaan, Leuven, B-3001 Space Science Institute, Boulder, USA
Francesco Pucci
Affiliation:
Center for Mathematical Plasma Astrophysics, Department of Mathematics, KULeuven Belgium, 200B Celestijnenlaan, Leuven, B-3001
Vyacheslav Olshevsky
Affiliation:
Center for Mathematical Plasma Astrophysics, Department of Mathematics, KULeuven Belgium, 200B Celestijnenlaan, Leuven, B-3001
Sergio Servidio
Affiliation:
Via P. Bucci, Cubo 31C, Arcavacata di Rende, I-87036, Dipartimento di Fisica, Università della Calabria
Luca Sorriso-Valvo
Affiliation:
Nanotec-CNR, U.O.S. Cosenza, Arcavacata di Rende, Italy
David L. Newman
Affiliation:
University of Colorado, Boulder, CO 80309, USA
Martin V. Goldman
Affiliation:
University of Colorado, Boulder, CO 80309, USA
*
Email address for correspondence: giovanni.lapenta@kuleuven.be

Abstract

Reconnection outflows have been under intense recent scrutiny, from in situ observations and from simulations. These regions are host to a variety of instabilities and intense energy exchanges, often even superior to the main reconnection site. We report here a number of results drawn from an investigation of simulations. First, the outflows are observed to become unstable to drift instabilities. Second, these instabilities lead to the formation of secondary reconnection sites. Third, the secondary processes are responsible for large energy exchanges and particle energization. Finally, the particle distribution function are modified to become non-Maxwellian and include multiple interpenetrating populations.

Type
Research Article
Copyright
© Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aunai, N., Belmont, G. & Smets, R. 2011 Proton acceleration in antiparallel collisionless magnetic reconnection: Kinetic mechanisms behind the fluid dynamics. J. Geophys. Res. 116 (A9).Google Scholar
Bhattacharjee, A., Huang, Y.-M., Yang, H. & Rogers, B. 2009 Fast reconnection in high-Lundquist-number plasmas due to the plasmoid Instability. Phys. Plasmas 16 (11), 112102.Google Scholar
Birn, J., Drake, J. F., Shay, M. A., Rogers, B. N., Denton, R. E., Hesse, M., Kuznetsova, M., Ma, Z. W., Bhattacharjee, A., Otto, A. et al. 2001 Geospace environmental modeling (GEM) magnetic reconnection challenge. J. Geophys. Res. 106 (A3), 37153719.Google Scholar
Birn, J, Hesse, M, Nakamura, R & Zaharia, S 2013 Particle acceleration in dipolarization events. J. Geophys. Res. 118 (5), 19601971.Google Scholar
Biskamp, D. 2000 Magnetic Reconnection in Plasmas. Cambridge University Press.Google Scholar
Bulanov, S. V., Sakai, J. & Syrovatskii, S. I. 1979 Tearing-mode instability in approximately steady MHD configurations. Fiz. Plazmy 5, 280290.Google Scholar
Burch, J. L., Torbert, R. B., Phan, T. D., Chen, L.-J., Moore, T. E., Ergun, R. E., Eastwood, J. P., Gershman, D. J., Cassak, P. A., Argall, M. R. et al. 2016 Electron-scale measurements of magnetic reconnection in space. Science 352 (6290), aaf2939.Google Scholar
Dahlin, J. T., Drake, J. F. & Swisdak, M. 2017 The role of three-dimensional transport in driving enhanced electron acceleration during magnetic reconnection. Phys. Plasmas 24 (9), 092110; AIP Publishing.CrossRefGoogle Scholar
Daughton, W., Roytershteyn, V., Karimabadi, H., Yin, L., Albright, B. J., Bergen, B. & Bowers, K. J. 2011 Role of electron physics in the development of turbulent magnetic reconnection in collisionless plasmas. Nat. Phys. 7 (7), 539542.Google Scholar
Divin, A., Khotyaintsev, Y. V., Vaivads, A. & André, M. 2015a Lower hybrid drift instability at a dipolarization front. J. Geophys. Res 120 (2), 11241132.Google Scholar
Divin, A., Khotyaintsev, Y. V., Vaivads, A., André, M., Markidis, S. & Lapenta, G. 2015b Evolution of the lower hybrid drift instability at reconnection jet front. J. Geophys. Res. 120 (4), 26752690.Google Scholar
Divin, A., Markidis, S., Lapenta, G., Semenov, V. S., Erkaev, N. V. & Biernat, H. K. 2010 Model of electron pressure anisotropy in the electron diffusion region of collisionless magnetic reconnection. Phys. Plasmas 17 (12), 122102.Google Scholar
Eastwood, J. P., Goldman, M. V., Hietala, H., Newman, D. L., Mistry, R. & Lapenta, G. 2015 Ion reflection and acceleration near magnetotail dipolarization fronts associated with magnetic reconnection. J. Geophys. Res. 120 (1), 511525.Google Scholar
Eastwood, J. P., Phan, T. D., Bale, S. D. & Tjulin, A. 2009 Observations of turbulence generated by magnetic reconnection. Phys. Rev. Lett. 102 (3), 035001.Google Scholar
Fu, H. S., Vaivads, A., Khotyaintsev, Y. V., André, M., Cao, J. B., Olshevsky, V., Eastwood, J. P. & Retinò, A. 2017 Intermittent energy dissipation by turbulent reconnection. Geophys. Res. Lett. 44, 3743.Google Scholar
Goldman, M. V., Newman, D. L. & Lapenta, G. 2016 What can we learn about magnetotail reconnection from 2D PIC Harris-sheet simulations? Space Sci. Rev. 199 (1–4), 651688.Google Scholar
Greene, J. M. 1992 Locating three-dimensional roots by a bisection method. J. Comput. Phys. 98, 194198.Google Scholar
Guzdar, P. N., Hassam, A. B., Swisdak, M. & Sitnov, M. I. 2010 A simple MHD model for the formation of multiple dipolarization fronts. Geophys. Res. Lett. 37 (20), L20102.Google Scholar
Harris, E. G. 1962 On a plasma sheath separating regions of oppositely directed magnetic field. Il Nuovo Cimento 23, 115121.Google Scholar
Hesse, M. & Schindler, K. 1988 A theoretical foundation of general magnetic reconnection. J. Geophys. Res. 93 (A6), 55595567.Google Scholar
Huang, Y.-M., Comisso, L. & Bhattacharjee, A. 2017 Plasmoid instability in evolving current sheets and onset of fast reconnection. Astrophys. J. 849 (2), 75.Google Scholar
Karimabadi, H., Pritchett, P. L., Daughton, W. & Krauss-Varban, D. 2003 Ion–ion kink instability in the magnetotail: 2. Three-dimensional full particle and hybrid simulations and comparison with observations. J. Geophys. Res. 108 (A11).Google Scholar
Kruskal, M. & Tuck, J. L. 1958 The instability of a pinched fluid with a longitudinal magnetic field. Proc. R. Soc. Lond. A 245 (1241), 222237.Google Scholar
Lapenta, G. 2008 Self-feeding turbulent magnetic reconnection on macroscopic scales. Phys. Rev. Lett. 100, 235001.Google Scholar
Lapenta, G., Ashour-Abdalla, M., Walker, R. J. & El Alaoui, M. 2016a A multiscale study of ion heating in earth’s magnetotail. Geophys. Res. Lett. 43 (2), 515524.Google Scholar
Lapenta, G. & Bettarini, L. 2011 Self-consistent seeding of the interchange instability in dipolarization fronts. Geophys. Res. Lett. 38 (11).Google Scholar
Lapenta, G., Brackbill, J. U. & Daughton, W. S. 2003 The unexpected role of the lower hybrid drift instability in magnetic reconnection in three dimensions. Phys. Plasmas 10, 15771587.Google Scholar
Lapenta, G., Goldman, M., Newman, D., Markidis, S. & Divin, A. 2014a Electromagnetic energy conversion in downstream fronts from three dimensional kinetic reconnectiona. Phys. Plasmas 21 (5), 055702.Google Scholar
Lapenta, G., Goldman, M. V., Newman, D. L. & Markidis, S. 2016b Energy exchanges in reconnection outflows. Plasma Phys. Control. Fusion 59 (1), 014019.Google Scholar
Lapenta, G., Markidis, S., Divin, A., Newman, D. & Goldman, M. 2014b Separatrices: the crux of reconnection. J. Plasma Phys. 81 (1), 139.Google Scholar
Lapenta, G., Markidis, S., Goldman, M. V. & Newman, D. L. 2015 Secondary reconnection sites in reconnection-generated flux ropes and reconnection fronts. Nat. Phys. 11 (8), 690695.Google Scholar
Lapenta, G., Wang, R. & Cazzola, E. 2016c Reconnection separatrix: simulations and observations. In Magnetic Reconnection: Concepts and Applications (ed. Gonzalez, W. D. & Parker, E. N.). pp. 315344. Springer.Google Scholar
Lottermoser, R.-F., Scholer, M. & Matthews, A. P. 1998 Ion kinetic effects in magnetic reconnection: hybrid simulations. J. Geophys. Res. 103 (A3), 45474559.Google Scholar
Loureiro, N. F., Schekochihin, A. A. & Cowley, S. C. 2007 Instability of current sheets and formation of plasmoid chains. Phys. Plasmas 14 (10), 100703.Google Scholar
Markidis, S., Lapenta, G. & Rizwan-uddin 2010 Multi-scale simulations of plasma with iPIC3D. Maths Comput. Simul. 80, 15091519.Google Scholar
Matteini, L., Alexandrova, O., Chen, C. H. K. & Lacombe, C. 2017 Electric and magnetic spectra from MHD to electron scales in the magnetosheath. Mon. Not. R. Astron. Soc. 466, 945951.Google Scholar
Moses, R. W., Finn, J. M. & Ling, K. M. 1993 Plasma heating by collisionless magnetic reconnection: analysis and computation. J. Geophys. Res. 98 (A3), 40134040.Google Scholar
Nakamura, M. S., Matsumoto, H. & Fujimoto, M. 2002 Interchange instability at the leading part of reconnection jets. Geophys. Res. Lett. 29 (8), 1247.Google Scholar
Olshevsky, V., Deca, J., Divin, A., Peng, I. B., Markidis, S., Innocenti, M. E., Cazzola, E. & Lapenta, G. 2016 Magnetic null points in kinetic simulations of space plasmas. Astrophys. J. 819 (1), 52.Google Scholar
Pan, Q., Ashour-Abdalla, M., El-Alaoui, M., Walker, R. J. & Goldstein, M. L. 2012 Adiabatic acceleration of suprathermal electrons associated with dipolarization fronts. J. Geophys. Res. 117 (A12224).Google Scholar
Pucci, F., Servidio, S., Sorriso-Valvo, L., Olshevsky, V., Matthaeus, W. H., Malara, F., Goldman, M. V., Newman, D. L. & Lapenta, G. 2017 Properties of turbulence in the reconnection exhaust: numerical simulations compared with observations. Astrophys. J. 841 (1), 60.Google Scholar
Pucci, F. & Velli, M. 2013 Reconnection of quasi-singular current sheets: the ‘ideal’ tearing mode. Astrophys. J. Lett. 780 (2), L19.Google Scholar
Ricci, P., Brackbill, J. U., Daughton, W. & Lapenta, G. 2004 Influence of the lower hybrid drift instability on the onset of magnetic reconnection. Phys. Plasmas 11 (9), 44894500.Google Scholar
Ricci, P., Lapenta, G. & Brackbill, J. U. 2003 Electron acceleration and heating in collisioneless magnetic reconnection. Phys. Plasmas 10 (9), 35543560.Google Scholar
Ricci, P., Lapenta, G. & Brackbill, J. U. 2004 Structure of the magnetotail current: kinetic simulation and comparison with satellite observations. Geophys. Res. Lett. 31, L06801; doi:10.1029/2003GL019207.Google Scholar
Shafranov, V. D. 1957 On equilibrium magnetohydrodynamic configurations. Zh. Eksp. Teor. Fiz. 33 (3), 710722.Google Scholar
Skender, M. & Lapenta, G. 2010 On the instability of a quasiequilibrium current sheet and the onset of impulsive bursty reconnection. Phys. Plasmas 17, 022905.Google Scholar
Tenerani, A., Velli, M., Pucci, F., Landi, S. & Rappazzo, A. F. 2016 ‘Ideally’ unstable current sheets and the triggering of fast magnetic reconnection. J. Plasma Phys. 82 (5).Google Scholar
Vapirev, A. E., Lapenta, G., Divin, A., Markidis, S., Henri, P., Goldman, M. & Newman, D. 2013 Formation of a transient front structure near reconnection point in 3-D PIC simulations. J. Geophys. Res. 118 (4), 14351449.Google Scholar
Wan, W. & Lapenta, G. 2008 Evolutions of non-steady-state magnetic reconnection. Phys. Plasmas 15 (10), 102302.Google Scholar
Wan, W., Lapenta, G., Delzanno, G. L. & Egedal, J. 2008 Electron acceleration during guide field magnetic reconnection. Phys. Plasmas 15 (3), 032903.Google Scholar
Wan, M., Matthaeus, W. H., Karimabadi, H., Roytershteyn, V., Shay, M., Wu, P., Daughton, W., Loring, B. & Chapman, S. C. 2012 Intermittent dissipation at kinetic scales in collisionless plasma turbulence. Phys. Rev. Lett. 109 (19), 195001.Google Scholar
Zenitani, S., Hesse, M., Klimas, A. & Kuznetsova, M. 2011 New measure of the dissipation region in collisionless magnetic reconnection. Phys. Rev. Lett. 106 (19), 195003.Google Scholar