Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T04:55:43.626Z Has data issue: false hasContentIssue false

A numerical study of gravity-driven instability in strongly coupled dusty plasma. Part 1. Rayleigh–Taylor instability and buoyancy-driven instability

Published online by Cambridge University Press:  12 April 2021

Vikram S. Dharodi*
Affiliation:
Mechanical Engineering, Michigan State University, East Lansing, MI48824, USA
Amita Das
Affiliation:
Department of Physics, Indian Institute of Technology, New Delhi, 110016Delhi, India
*
Email address for correspondence: dharodiv@msu.edu

Abstract

Rayleigh–Taylor (RT) and buoyancy-driven (BD) instabilities are driven by gravity in a fluid system with inhomogeneous density. The paper investigates these instabilities for a strongly coupled dusty plasma medium. This medium has been represented here in the framework of the generalized hydrodynamics (GHD) fluid model which treats it as a viscoelastic medium. The incompressible limit of the GHD model is considered here. The RT instability is explored both for gradual and sharp density gradients stratified against gravity. The BD instability is discussed by studying the evolution of a rising bubble (a localized low-density region) and a falling droplet (a localized high-density region) in the presence of gravity. Since both the rising bubble and falling droplet have symmetry in spatial distribution, we observe that a falling droplet process is equivalent to a rising bubble. We also find that both the gravity-driven instabilities get suppressed with increasing coupling strength of the medium. These observations have been illustrated analytically as well as by carrying out two-dimensional nonlinear simulations. Part 2 of this paper is planned to extend the present study of the individual evolution of a bubble and a droplet to their combined evolution in order to understand the interaction between them.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abarzhi, S. I. 2008 Coherent structures and pattern formation in the Rayleigh–Taylor turbulent mixing. Phys. Scr. 78 (1), 015401.CrossRefGoogle Scholar
Abarzhi, S. I. 2010 Review of theoretical modelling approaches of Rayleigh–Taylor instabilities and turbulent mixing. Phil. Trans. R. Soc. Lond. A 368 (1916), 18091828.Google ScholarPubMed
Abarzhi, S. I. & Rosner, R. 2010 Comparative study of approaches for modeling Rayleigh–Taylor turbulent mixing. Phys. Scr. T142, 1.CrossRefGoogle Scholar
Allen, A. J. & Hughes, P. A. 1984 The Rayleigh–Taylor instability in astrophysical fluids. MNRAS 208, 609621.Google Scholar
Ariel, P. D. & Bhatia, P. K. 1970 Rayleigh–Taylor instability of a rotating plasma. Nucl. Fusion 10 (2), 141.CrossRefGoogle Scholar
Arnett, W. D., Bahcall, J. N., Kirshner, R. P. & Woosley, S. E. 1989 Supernova 1987a. Annu. Rev. Astron. Astrophys. 27, 629700.CrossRefGoogle Scholar
Avinash, K. & Sen, A. 2015 Rayleigh–Taylor instability in dusty plasma experiment. Phys. Plasmas 22 (8), 083707.CrossRefGoogle Scholar
Baldwin, K. A., Scase, M. M. & Hill, R. J. A. 2015 The inhibition of the Rayleigh–Taylor instability by rotation. Sci. Rep. 5, 11706.CrossRefGoogle Scholar
Beale, J. C. & Reitz, R. D. 1999 Modeling spray atomization with the Kelvin–Helmholtz/Rayleigh– Taylor hybrid model. Atomiz. Sprays 9 (6), 623650.Google Scholar
Bell, J. B., Day, M. S., Rendleman, C. A., Woosley, S. E. & Zingale, M. 2004 Direct numerical simulations of type ia supernovae flames. II. The Rayleigh–Taylor instability. Astrophys. J. 608 (2), 883.CrossRefGoogle Scholar
Boris, J. P., Landsberg, A. M., Oran, E. S. & Gardner, J. H. 1993 LCPFCT A flux-corrected transport algorithm for solving generalized continuity equations. Technical Report NRL Memorandum Report 93-7192, Naval Research Laboratory.CrossRefGoogle Scholar
Chandrasekhar, S. 1981 Hydrodynamic and Hydromagnetic Stability. Dover.Google Scholar
Chertkov, M. 2003 Phenomenology of Rayleigh–Taylor turbulence. Phys. Rev. Lett. 91, 115001.CrossRefGoogle ScholarPubMed
d'Angelo, N. 1993 The Rayleigh–Taylor instability in dusty plasmas. Planet. Space Sci. 41 (6), 469474.CrossRefGoogle Scholar
Das, A., Dharodi, V. & Tiwari, S. 2014 Collective dynamics in strongly coupled dusty plasma medium. J. Plasma Phys. 80 (6), 855.CrossRefGoogle Scholar
Das, A. & Kaw, P. K. 2014 Suppression of Rayleigh–Taylor instability in strongly coupled plasmas. Phys. Plasmas 21 (6), 062102.CrossRefGoogle Scholar
Debnath, L. 1994 Nonlinear Water Waves. Academic Press.Google Scholar
Dharodi, V. S. 2020 Rotating vortices in two-dimensional inhomogeneous strongly coupled dusty plasmas: shear and spiral density waves. Phys. Rev. E 102, 043216.CrossRefGoogle ScholarPubMed
Dharodi, V. S. & Das, A. 2014 Rayleigh–Taylor instability in a visco-elastic medium using generalized hydrodynamic model. In 17th international congress on plasma physics at Instituto Superior Tecnico, Lisbon, Portugal.Google Scholar
Dharodi, V. S., Das, A., Patel, B. G. & Kaw, P. K. 2016 Sub-and super-luminar propagation of structures satisfying poynting-like theorem for incompressible generalized hydrodynamic fluid model depicting strongly coupled dusty plasma medium. Phys. Plasmas 23 (1), 013707.CrossRefGoogle Scholar
Dharodi, V. S., Tiwari, S. K. & Das, A. 2014 Visco-elastic fluid simulations of coherent structures in strongly coupled dusty plasma medium. Phys. Plasmas 21 (7), 073705.CrossRefGoogle Scholar
Dickinson, H., Bostick, W. H., DiMarco, J. N. & Koslov, S. 1962 Experimental study of Rayleigh–Taylor instability in plasma. Phys. Fluids 5 (9), 10481056.CrossRefGoogle Scholar
Dolai, B. & Prajapati, R. P. 2018 The rotating Rayleigh–Taylor instability in a strongly coupled dusty plasma. Phys. Plasmas 25 (8), 083708.CrossRefGoogle Scholar
Frenkel, J. 1955 Kinetic Theory of Liquids. Dover Publications.Google Scholar
Garai, S. 2016 Stability characteristics of Rayleigh–Taylor instability in a strongly coupled incompressible dust fluid with finite shear flow. Phys. Plasmas 23 (11), 113706.CrossRefGoogle Scholar
Garai, S., Banerjee, D., Janaki, M. S. & Chakrabarti, N. 2015 Stabilization of Rayleigh–Taylor instability in a non-newtonian incompressible complex plasma. Phys. Plasmas 22 (3), 033702.CrossRefGoogle Scholar
Garai, S., Ghose-Choudhury, A. & Guha, P. 2020 Rayleigh Taylor like instability in presence of shear velocity in a strongly coupled quantum plasma. Phys. Scr. 95 (10), 105605.CrossRefGoogle Scholar
Goldston, R. J. 2020 Introduction to Plasma Physics. CRC Press.CrossRefGoogle Scholar
Guido, B., Mazzino, A., Musacchio, S. & Vozella, L. 2010 Rayleigh–Taylor instability in a viscoelastic binary fluid. J. Fluid Mech. 643, 127136.Google Scholar
Guo, Y. & Tice, I. 2010 Linear Rayleigh–Taylor instability for viscous, compressible fluids. SIAM J. Math. Anal. 42 (4), 16881720.CrossRefGoogle Scholar
Haines, B. H., Vold, E. L., Molvig, K., Rauenzahn, R. & Aldrich, C. 2014 Plasma transport in Rayleigh–Taylor and Kelvin–Helmholtz instabilities. Phys. Plasmas 21 (9), 092306.CrossRefGoogle Scholar
Horstmann, J. T., Henningsson, P., Thomas, A. L. R. & Bomphrey, R. J. 2014 Wake development behind paired wings with tip and root trailing vortices: consequences for animal flight force estimates. PLoS One 9 (3), e91040.CrossRefGoogle ScholarPubMed
Hoshoudy, G. A. 2009 Quantum effects on the Rayleigh–Taylor instability of stratified fluid/plasma through porous media. Phys. Lett. A 373 (30), 25602567.CrossRefGoogle Scholar
Hoshoudy, G. A. 2011 Quantum effects on the Rayleigh–Taylor instability of viscoelastic plasma model through a porous medium. J. Mod. Phys. 2 (10), 1146–1155.CrossRefGoogle Scholar
Hoshoudy, G. A. 2014 Rayleigh–Taylor instability in magnetized plasma. World J. Mech. 4 (08), 260.CrossRefGoogle Scholar
Hosseini, B. S., Turek, S., Möller, M. & Palmes, C. 2017 Isogeometric analysis of the Navier–Stokes–Cahn–Hilliard equations with application to incompressible two-phase flows. J. Comput. Phys. 348, 171194.CrossRefGoogle Scholar
Ikezi, H. 1986 Coulomb solid of small particles in plasmas. Phys. Fluids 29 (6), 17641766.CrossRefGoogle Scholar
Kadau, K., Germann, T. C., Hadjiconstantinou, N. G., Lomdahl, P. S., Dimonte, G., Holian, B. L. & Alder, B. J. 2004 Nanohydrodynamics simulations: an atomistic view of the Rayleigh–Taylor instability. Proc. Natl Acad. Sci. USA 101 (16), 58515855.CrossRefGoogle ScholarPubMed
Kaw, P. K. 2001 Collective modes in a strongly coupled dusty plasma. Phys. Plasmas 8 (5), 18701878.CrossRefGoogle Scholar
Kaw, P. K. & Sen, A. 1998 Low frequency modes in strongly coupled dusty plasmas. Phys. Plasmas 5 (10), 35523559.CrossRefGoogle Scholar
Keskinen, M. J., Szuszczewicz, E. P., Ossakow, S. L. & Holmes, J. C. 1981 Nonlinear theory and experimental observations of the local collisional Rayleigh–Taylor instability in a descending equatorial spread f ionosphere. J. Geophys. Res. 86 (A7), 57855792.CrossRefGoogle Scholar
Kessler, D. A., Dahlburg, R. B. & Ganguli, G. 2014 Gravitational instability and shear stabilization in a dusty plasma layer. In 2014 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM), pp. 1–1. IEEE.CrossRefGoogle Scholar
Khiar, B., Revet, G., Ciardi, A., Burdonov, K., Filippov, E., Béard, J., Cerchez, M., Chen, S. N., Gangolf, T., Makarov, S. S., et al. 2019 Laser-produced magnetic-Rayleigh–Taylor unstable plasma slabs in a 20 T magnetic field. Phys. Rev. Lett. 123 (20), 205001.CrossRefGoogle Scholar
Kong, S. C., Senecal, P. K. & Reitz, R. D. 1999 Developments in spray modeling in diesel and direct-injection gasoline engines. Oil Gas Sci. Technol. 54 (2), 197204.CrossRefGoogle Scholar
Liang, H., Hu, X., Huang, X. & Xu, J. 2019 Direct numerical simulations of multi-mode immiscible Rayleigh–Taylor instability with high Reynolds numbers. Phys. Fluids 31 (11), 112104.Google Scholar
Liberatore, S., Jaouen, S., Tabakhoff, E. & Canaud, B. 2009 Compressible magnetic Rayleigh–Taylor instability in stratified plasmas: comparison of analytical and numerical results in the linear regime. Phys. Plasmas 16 (4), 044502.CrossRefGoogle Scholar
Liu, J., Mak, T., Zhou, Z. & Xu, Z. 2002 Fundamental study of reactive oily-bubble flotation. Miner. Engng 15 (9), 667676.CrossRefGoogle Scholar
Livescu, D. 2004 Compressibility effects on the Rayleigh–Taylor instability growth between immiscible fluids. Phys. Fluids 16 (1), 118127.CrossRefGoogle Scholar
Lyubimova, T., Vorobev, A. & Prokopev, S. 2019 Rayleigh–Taylor instability of a miscible interface in a confined domain. Phys. Fluids 31 (1), 014104.CrossRefGoogle Scholar
Ma, J., Chen, Y.-H., Gan, B.-X. & Yu, M. Y. 2006 Behavior of the Rayleigh–Taylor mode in a dusty plasma with rotational and shear flows. Planet. Space Sci. 54 (8), 719725.CrossRefGoogle Scholar
Mikhailenko, V. S., Mikhailenko, V. V. & Weiland, J. 2002 Rayleigh–Taylor instability in plasmas with shear flow. Phys. Plasmas 9 (7), 28912895.CrossRefGoogle Scholar
Nayyar, N. K. & Trehan, S. K. 1970 Effect of gyro-viscosity on Rayleigh–Taylor instability of a plasma. J. Plasma Phys. 4 (3), 563571.CrossRefGoogle Scholar
Niewiadomski, M., Nguyen, A. V., Hupka, J., Nalaskowski, J. & Miller, J. D. 2007 Air bubble and oil droplet interactions in centrifugal fields during air-sparged hydrocyclone flotation. Intl J. Environ. Pollut. 30 (2), 313331.CrossRefGoogle Scholar
Nilson, P. M., Gao, L., Igumenshchev, I. V., Fiksel, G., Yan, R., Davies, J. R., Martinez, D., Smalyuk, V. A., Haines, M. G., Blackman, E. G., et al. 2014 Magnetic-field generation by the ablative nonlinear Rayleigh–Taylor instability. J. Plasma Phys. 81 (2), 365810201.CrossRefGoogle Scholar
Norman, M. L., Smarr, L., Smith, M. D. & Wilson, J. R. 1981 Hydrodynamic formation of twin-exhaust jets. Astrophysical 247, 5258.CrossRefGoogle Scholar
Pacha, K. A., Heinrich, J. R., Kim, S.-H. & Merlino, R. L. 2012 Observation of the Taylor instability in a dusty plasma. Phys. Plasmas 19 (1), 014501.CrossRefGoogle Scholar
Pacha, K. A. & Merlino, R. L. 2020 Further developments on observations of the Taylor instability in a dusty plasma. Phys. Plasmas 27 (8), 084501.CrossRefGoogle Scholar
Piriz, A. R., Cela, J. J. L., Cortazar, O. D., Tahir, N. A. & Hoffmann, D. H. H. 2005 Rayleigh–Taylor instability in elastic solids. Phys. Rev. E 72 (5), 056313.CrossRefGoogle ScholarPubMed
Plag, H.-P. & Jüttner, H.-U. 1995 Rayleigh–Taylor instabilities of a self-gravitating earth. J. Geodyn. 20 (3), 267288.CrossRefGoogle Scholar
Rayleigh, Lord 1900 Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Scientific papers, pp. 200–207.Google Scholar
Sen, S., Fukuyama, A. & Honary, F. 2010 Rayleigh Taylor instability in a dusty plasma. J. Atmos. Sol. Terres. Phys. 72 (13), 938942.CrossRefGoogle Scholar
Srinivasan, B. & Tang, X.-Z. 2013 The mitigating effect of magnetic fields on Rayleigh–Taylor unstable inertial confinement fusion plasmas. Phys. Plasmas 20 (5), 056307.CrossRefGoogle Scholar
Swarztrauber, P., Sweet, R. & Adams, J. C. 1999 Fishpack: Efficient fortran subprograms for the solution of elliptic partial differential equations. UCAR Publication.Google Scholar
Takabe, H., Mima, K., Montierth, L. & Morse, R. L. 1985 Self-consistent growth rate of the Rayleigh–Taylor instability in an ablatively accelerating plasma. Phys. Fluids 28 (12), 36763682.CrossRefGoogle Scholar
Talat, N., Mavrič, B., Hatić, V., Bajt, S. & Šarler, B. 2018 Phase field simulation of Rayleigh–Taylor instability with a meshless method. Engng Anal. Bound. Elem. 87, 7889.CrossRefGoogle Scholar
Taylor, G. I. 1950 The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc. R. Soc. Lond. A 201 (1065), 192196.Google Scholar
Tiwari, S. K., Das, A., Angom, D., Patel, B. G. & Kaw, P. 2012 Kelvin–Helmholtz instability in a strongly coupled dusty plasma medium. Phys. Plasmas 19 (7), 073703.CrossRefGoogle Scholar
Tiwari, S. K., Dharodi, V. S., Das, A., Patel, B. G. & Kaw, P. 2014 Evolution of sheared flow structure in visco-elastic fluids. AIP Conf. Proc. 1582 (1), 55.CrossRefGoogle Scholar
Van Aken, G. A. 2001 Aeration of emulsions by whipping. Colloids Surf. A 190 (3), 333354.CrossRefGoogle Scholar
Veeresha, B. M., Das, A. & Sen, A. 2005 Rayleigh–Taylor instability driven nonlinear vortices in dusty plasmas. Phys. Plasmas 12 (4), 044506.CrossRefGoogle Scholar
Waddell, J. T., Niederhaus, C. E. & Jacobs, J. W. 2001 Experimental study of Rayleigh–Taylor instability: low atwood number liquid systems with single-mode initial perturbations. Phys. Fluids 13 (5), 12631273.CrossRefGoogle Scholar
Weber, C. R., Clark, D. S., Cook, A. W., Busby, L. E. & Robey, H. F. 2014 Inhibition of turbulence in inertial-confinement-fusion hot spots by viscous dissipation. Phys. Rev. E 89 (5), 053106.CrossRefGoogle ScholarPubMed
Xie, L., Shi, C., Cui, X. & Zeng, H. 2017 Surface forces and interaction mechanisms of emulsion drops and gas bubbles in complex fluids. Langmuir 33 (16), 39113925.CrossRefGoogle ScholarPubMed
Youngs, D. L. 1984 Numerical simulation of turbulent mixing by Rayleigh–Taylor instability. Physica D 12 (1–3), 3244.CrossRefGoogle Scholar
Zhang, T., Wu, J. & Lin, X. 2020 Numerical investigation on formation and motion of bubble or droplet in quiescent flow. Phys. Fluids 32 (3), 032106.Google Scholar
Zhao, L., Boufadel, M. C., King, T., Robinson, B., Gao, F., Socolofsky, S. A. & Lee, K. 2017 Droplet and bubble formation of combined oil and gas releases in subsea blowouts. Mar. Pollut. Bull. 120 (1–2), 203216.CrossRefGoogle ScholarPubMed
Zhou, Y. 2017 a Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I. Phys. Rep. 720 (2), 1136.Google Scholar
Zhou, Y. 2017 b Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II. Phys. Rep. 723, 1160.Google Scholar
Zingale, M., Woosley, S. E., Rendleman, C. A., Day, M. S. & Bell, J. B. 2005 Three-dimensional numerical simulations of Rayleigh–Taylor unstable flames in type ia supernovae. Astrophys. J. 632 (2), 10211034.CrossRefGoogle Scholar
Supplementary material: File

Dharodi and Das supplementary material

Dharodi and Das supplementary material

Download Dharodi and Das supplementary material(File)
File 1.4 MB