Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T10:46:28.472Z Has data issue: false hasContentIssue false

Obliquely propagating whistler mode waves in cold plasmas permeated by dilute low-β anisotropic plasmas

Published online by Cambridge University Press:  13 March 2009

K. Hashimoto
Affiliation:
Department of Electrical Engineering, Kyoto University, Kyoto, Japan
I. Kimura
Affiliation:
Department of Electrical Engineering, Kyoto University, Kyoto, Japan

Abstract

We analyse the growth rate of obliquely propagating whistler mode waves in a cold plasma that also contains some hot electrons in a bi-Maxwellian distribution. Approximate analytic expressions for the growth rate are derived explicitly. They are represented by elementary functions only, consisting of a Landau damping term and a cyclotron instability term. They are found to be valid for a wide range of wave normal angles. Landau damping in the oblique propagation does not always become larger even if the wave normal angles increase. The necessary conditions for the minimal parallel growth are Ω > 0.5Ωe and T> 2T in the bi-Maxwellian hot plasma. This method is applied to calculations of the net growth along the ray paths of obliquely propagating non-ducted whistler mode waves in a model magnetosphere.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aikyo, K. & Ondoh, T. 1971 J. Radio Res. Lab. 18, 153.Google Scholar
Brinca, A. L. 1972 J. Geophys. Res. 77, 3495.CrossRefGoogle Scholar
Burton, R. K. & Holzer, R. E. 1974 J. Geophys. Res. 79, 1014.CrossRefGoogle Scholar
Cuperman, S. & Landau, R. W. 1974 J. Geophys. Res. 79, 128.CrossRefGoogle Scholar
Cuperman, S. & Sternlieb, A. 1974 J. Plasma Phys. 11, 175.CrossRefGoogle Scholar
Eviatar, A., Lenchek, A. M. & Singer, S. F. 1964 Phys. Fluids, 7, 1775.CrossRefGoogle Scholar
Fried, B. D. & Conte, S. D. 1961 The Plasma Dispersion Function. Academic.Google Scholar
Gautschi, W. 1970 SIAM J. Numer. Anal. 7, 187.CrossRefGoogle Scholar
Kennel, C. F. 1966 Phys. Fluids, 9, 2190.CrossRefGoogle Scholar
Kennel, C. F. & Thorne, R. M. 1967 J. Geophys. Res. 72, 871.CrossRefGoogle Scholar
Kimura, I. 1966 Radio Sci. 1, 269.CrossRefGoogle Scholar
Liemohn, H. B. 1967 J. Geophys. Res. 72, 39.CrossRefGoogle Scholar
Stix, T. H. 1962 The Theory of Plasma Waves. McGraw-Hill.Google Scholar
Taylor, W. W. L. & Shawhan, S. D. 1974 J. Geophys. Res. 79, 105.CrossRefGoogle Scholar
Thorne, R. M. & Kennel, C. F. 1967 J. Geophys. Res. 72, 857.CrossRefGoogle Scholar
Thorne, R. M., Smith, E. J., Burton, R. K. & Holzer, R. E. 1973 J. Geophys. Res. 78, 1581.CrossRefGoogle Scholar