Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T11:03:17.470Z Has data issue: false hasContentIssue false

On the parametric decay of waves in magnetized plasmas

Published online by Cambridge University Press:  01 February 2009

G. BRODIN
Affiliation:
Department of Physics, Umeå University, SE-90187 Umeå, Sweden (gert.brodin@physics.umu.se)
L. STENFLO
Affiliation:
Department of Physics, Umeå University, SE-90187 Umeå, Sweden (gert.brodin@physics.umu.se) Linköping University, Department of Physics, SE-58183 Linköping, Sweden
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We reconsider the theory for three-wave interactions in cold plasmas. In particular, we demonstrate that previously overlooked formulations of the general theory are highly useful when deriving concrete expressions for specific cases. We also point out that many previous results deduced directly from the basic plasma equations contain inappropriate approximations leading to unphysical results. Finally, generalizations to more elaborate plasma models containing, for example, kinetic effects are given.

Type
Letter to the Editor
Copyright
Copyright © Cambridge University Press 2008

References

Brodin, G. 1999 Phys. Scr. T 82, 95.CrossRefGoogle Scholar
Brodin, G. and Stenflo, L. 1990 Contr. Plasma Phys. 30, 413.CrossRefGoogle Scholar
Davidson, R. C. 1972 Methods in Nonlinear Plasma Theory. London: Academic Press.Google Scholar
Kumar, P. and Tripathi, V. K. 2008 Phys. Plasmas 15, 052107.CrossRefGoogle Scholar
Laham, N. M. et al. 2000 Phys. Plasmas 7, 3993.CrossRefGoogle Scholar
Lazar, M. and Merches, I. 2003 Phys. Lett. A 313, 418.CrossRefGoogle Scholar
Panwar, A. and Sharma, A. K. 2007 Phys. Scr. 75, 439.CrossRefGoogle Scholar
Sagdeev, R. Z. and Galeev, A. A. 1964 Lectures on the Non-linear Theory of Plasma, IC/66/64. Trieste, Italy: International Centre for Theoretical Physics.Google Scholar
Shukla, P. K. (ed.) 1999 Nonlinear plasma science. Phys. Scr. T 82, 1141.Google Scholar
Shukla, P. K., Rao, N. N., Yu, M. Y. and Tsintsadze, N. L. 1986 Phys. Rep. 138, 1.CrossRefGoogle Scholar
Sjölund, A. and Stenflo, L. 1967 Z. Physik 204, 211.CrossRefGoogle Scholar
Stenflo, L. 1971 Ann. Phys. 27, 289.CrossRefGoogle Scholar
Stenflo, L. 1973 Planet. Space. Sci. 21, 391.CrossRefGoogle Scholar
Stenflo, L. 1994 Phys. Scr. T 50, 15.CrossRefGoogle Scholar
Stenflo, L. 2004 Phys. Scr. T 107, 262.CrossRefGoogle Scholar
Stenflo, L. and Brodin, G. 2006 J. Plasma Phys. 72, 143.CrossRefGoogle Scholar
Stenflo, L. and Shukla, P. K. 1992 Planet. Space Sci. 40, 473.CrossRefGoogle Scholar
Stenflo, L. and Shukla, P. K. 2007 Handbook of the Solar-terrestrial Environment (ed. Kamide, Y. and Chian, A.). Berlin: Springer, pp. 311329.Google Scholar
Tsytovich, V. N. 1970 Nonlinear Effects in Plasma. New York: Plenum.CrossRefGoogle Scholar
Weiland, J. and Wilhelmsson, H. 1976 Coherent Nonlinear Interaction of Waves in Plasmas. Oxford: Pergamon.Google Scholar