Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T05:00:01.935Z Has data issue: false hasContentIssue false

On the validity of a hydrodynamic description of laser-driven fusion

Published online by Cambridge University Press:  13 March 2009

D. N. Lowy
Affiliation:
Department of Theoretical Physics, The University of New South Wales, Kensington, Sydney 2033, Australia
H. J. Kreuzer
Affiliation:
Department of Theoretical Physics, The University of New South Wales, Kensington, Sydney 2033, Australia

Abstract

The validity of hydrodynamic approximations for non-equilibrium plasmas is examined, with emphasis on applications to laser-driven fusion pellets. Typical density–temperature trajectories of such pellets, as predicted by hydrodynamic calculations in the published literature, are shown to lie sometimes outside the region of validity of hydrodynamic theory, which is an unsatisfactory situation. In view of this, we discuss certain criteria which can be easily used to test the self- consistent validity of any hydrodynamic result. Finally, it is noted that in the low-density, low-temperature plasma region, hydrodynamics initially breaks down because of a breakdown in conventional microscopic linear response theory. A modified microscopic theory is proposed which continues to be valid in this region. This may correspondingly extend the validity of hydrodynamics to plasmas of somewhat lower temperatures and densities.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhiezer, A. I., Akhiezer, I. A., Polovin, R. V., Sitenko, A. G. & Stepanov, K. N. 1975 Plasma Electrodynamics. I. Linear Theory. Porgamon.Google Scholar
Basov, N. G. & Krokhin, O. N. 1964 Sov. Phys. J.E.T.P. 19, 123.Google Scholar
Brack, M., Damgaard, J., Jensen, A. S., Pauli, H. C., Strutinski, V. M. & Wong, C. Y. 1972 Rev. Mod. Phys. 44, 320.Google Scholar
Brueokner, K. A. & Jorna, S. 1974 Rev. Mod. Phys. 46, 325.Google Scholar
Callen, H. B. 1960 Thermodynamics. Wiley.Google Scholar
Cercignani, C. 1975 Theory and Application of the Boltzmann Equation. Scottish Academia Press.Google Scholar
Dawson, M. N. 1964 Phys. Fluids, 7, 981.Google Scholar
Debye, P. & Huückel, E. 1923 Physik Z. 24, 185.Google Scholar
De, Groot S. R. & Suttorp, L. G. 1972 Foundations of Electrodynamics. North-Holland.Google Scholar
Fermi, E. 1928 Z. Physik, 48, 73.Google Scholar
Fetter, A. L. & Walecka, J. D. 1971 Quantum Theory of Many-Particle Systems, p. 278. McGraw-Hill.Google Scholar
Gomberg, H. et al. 1978 Proceedings of the 7th International Conference on Plasma Physics and Controlled Nuclear Fusion. Innsbruck, Austria.Google Scholar
Hede, B. B. J. & Carborre, J. P. 1972 Can. J. Phys. 50, 1756.CrossRefGoogle Scholar
Honda, N. 1964 J. Phys. Soc. Japan, 19, 1935.Google Scholar
Hora, H. 1964 Inst. Plasma Phys. (Garching) Report 6/23.Google Scholar
Hughes, W. F. & Young, F. J. 1966 The Electromagnetodynamics of Fluids. Wiley.Google Scholar
Ichimaru, S. 1973 Basic Principles of Plasma Physics: A Statistical Approach. Benjamin.Google Scholar
Kittel, C. 1971. Introduction to Solid State Physics, 4th Edn, p. 281. Wiley.Google Scholar
Kreuzer, H. J. 1978 Nuovo Cim. 45B, 169.CrossRefGoogle Scholar
Kreuzer, H. J. 1980 Nonequilibrium Thermodynamics and its Statistical Foundations. OxfordUniversity Press.Google Scholar
Kreuzer, H. J. & Teshina, R. 1977 Physica, 87A, 453.Google Scholar
Kreuzer, H. J. & Zasada, C. S. 1976 Physica, 83A, 573.Google Scholar
Lindhard, J. 1954 K. Dan Vidensk. Selsk. Mat. Fys. Medd. 28, 8.Google Scholar
Lowy, D. N. & BrownN, G. E. N, G. E. 1975 Phys. Rev. B 12, 2138.Google Scholar
Lowy, D. N. & Jackson, A. D. 1975 Phys. Rev. B 12, 1689.CrossRefGoogle Scholar
Matsubara, T. 1955 Prog. Theor. Phys. 14, 351.CrossRefGoogle Scholar
Montroll, E. W. & Ward, J. C. 1958 Phys. Fluids, 1, 55.CrossRefGoogle Scholar
Singwi, K. S., Tost, M. P., Land, R. H. & Sjoölandder, A. 1968 Phys. Rev. 176, 589.Google Scholar
Sitenko, A. G. 1967 Electromagnetic Fluctuations in Plasma. Academic.Google Scholar
Thomas, L. H. 1927 Proc. Camb. Phil. Soc. 23, 542.Google Scholar
Weast, R. C. (ed.) 1976 Handbook of Chemistry and Physics. Chemical Rubber Co., Cleveland.Google Scholar
Yasuhara, H. 1972 Solid State Comm. 11, 1481.Google Scholar