Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T03:36:51.840Z Has data issue: false hasContentIssue false

Particle-in-cell simulations of electron spin effects in plasmas

Published online by Cambridge University Press:  21 February 2013

GERT BRODIN
Affiliation:
Department of Physics, Umeå University, SE-901 87 Umeå, Sweden (mattias.marklund@physics.umu.se)
AMOL HOLKUNDKAR
Affiliation:
Department of Physics, Umeå University, SE-901 87 Umeå, Sweden (mattias.marklund@physics.umu.se) Department of Physics, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India
MATTIAS MARKLUND
Affiliation:
Department of Physics, Umeå University, SE-901 87 Umeå, Sweden (mattias.marklund@physics.umu.se) Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden

Abstract

We present a particle-in-cell code accounting for the magnetic dipole force and for the magnetization currents associated with the electron spin. The electrons are divided into spin-up and spin-down populations relative to the magnetic field, where the magnetic dipole force acts in opposite directions for the two species. To validate the code, we study wakefield generation by an electromagnetic pulse propagating parallel to an external magnetic field. The properties of the generated wakefield are shown to be in good agreement with previous theoretical results. Generalizations of the code to account for other quantum effects are discussed.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asenjo, F. A., Zamanian, J., Marklund, M., Brodin, G. and Johansson, P. 2011 New J. Phys. 14, 073042.CrossRefGoogle Scholar
Atwater, H. A. 2007 Sci. Am. 296, 56.CrossRefGoogle Scholar
Bonitz, M. 1998 Quantum Kinetic Theory. Stuttgart, Leipzig: B. G. Teubner.Google Scholar
Brodin, G., Lundin, J., Zamanian, J. and Stefan, M. 2011 New J. Phys. 13, 083017.CrossRefGoogle Scholar
Brodin, G., Marklund, M. and Manfredi, G. 2008 Phys. Rev. Lett. 100 175001.CrossRefGoogle Scholar
Brodin, G., Misra, A. P. and Marklund, M. 2010 Phys. Rev. Lett. 105, 105004.CrossRefGoogle Scholar
Dauger, D. E., Decyk, V. K. and Dawson, J. M. 2005 J. Comput. Phys. 209 559.CrossRefGoogle Scholar
Dawson, J. 1983 Rev. Mod. Phys. 55, 403.CrossRefGoogle Scholar
Glenzer, S. H. and Redmer, R. 2009 Rev. Mod. Phys. 81, 1625.CrossRefGoogle Scholar
Glenzer, S. H.et al. 2007 Phys. Rev. Lett. 98, 065002.CrossRefGoogle Scholar
Haas, F. 2005 Phys. Plasmas 12, 062117.CrossRefGoogle Scholar
Haas, F., Marklund, M., Brodin, G. and Zamanian, J. 2010a Phys. Lett. A 374, 481.CrossRefGoogle Scholar
Haas, F., Zamanian, J., Marklund, M. and Brodin, G. 2010b New J. Phys. 12, 073027.CrossRefGoogle Scholar
Harding, A. K. and Lai, D. 2006 Rep. Prog. Phys. 69, 2631.CrossRefGoogle Scholar
Kadanoff, L. P. and Baym, G. 1994 Quantum Statistical Mechanics. Boulder: Westview Press.Google Scholar
Lichters, R., Pfund, R. E. W. and Meyer-Ter-Vehn, J. 2005 LPIC++: A parallel one-dimensional relativistic electromagnetic particle-in-cell-code for simulating laser–plasma interactions. Report MPQ 225 (http://www.lichters.net/download.html).Google Scholar
Lindman, E. L. 2010 HEDP 6, 227; Wagner, U.et al. 2004 Phys. Rev. E 70, 026401.Google Scholar
Lundin, J. and Brodin, G. 2010 Phys. Rev. E 82, 056407.Google Scholar
Lundin, J., Zamanian, J., Marklund, M. and Brodin, G. 2007 Phys. Plasmas 14, 062112.CrossRefGoogle Scholar
Manfredi, G. 2005 Fields Inst. Commun. 46, 263.Google Scholar
Manfredi, G. and Hervieux, P.-A. 2007 Appl. Phys. Lett. 91, 061108.CrossRefGoogle Scholar
Marklund, M. and Brodin, G. 2007 Phys. Rev. Lett. 98, 025001.CrossRefGoogle Scholar
Marklund, M., Brodin, G., Stenflo, L. and Liu, C. S. 2008 Europhys. Lett. 84, 17006.CrossRefGoogle Scholar
Misra, A. P., Brodin, G., Marklund, M. and Shukla, P. K. 2010 Phys. Plasmas 17, 122306.CrossRefGoogle Scholar
Pukhov, A. and Meyer-ter-Vehn, J. 1996 Phys. Rev. Lett. 76.CrossRefGoogle Scholar
Pukhov, A. and Meyer-ter-Vehn, J. 2002 Appl. Phys. B 74, 355.CrossRefGoogle Scholar
Shukla, P. K. 2009 Nature Phys. 5, 9293.CrossRefGoogle Scholar
Shukla, P. K. and Eliasson, B. 2010 Phys. Uspekhi 53, 51.CrossRefGoogle Scholar
Shukla, P. K. and Eliasson, B. 2011 Rev. Mod. Phys. 83, 885.CrossRefGoogle Scholar
Tabak, M.et al. 1994 Phys. Plasmas 1, 1626.CrossRefGoogle Scholar
Tonge, J., Dauger, D. E. and Decyk, V. K. 2004 Comp. Phys. Commun. 164, 279.CrossRefGoogle Scholar
Zamanian, J., Marklund, M. and Brodin, G. 2010a New J. Phys. 12, 043019.CrossRefGoogle Scholar
Zamanian, J., Stefan, M., Marklund, M. and Brodin, G. 2010b Phys. Plasmas 17, 102109.CrossRefGoogle Scholar