Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T03:54:59.945Z Has data issue: false hasContentIssue false

Phase-space description of plasma waves. Part 2. Nonlinear theory

Published online by Cambridge University Press:  13 March 2009

K. Rönnmark
Affiliation:
Swedish Institute of Space Physics, University of Umeå, S-901 87 UMEÅ, Sweden
T. Biro
Affiliation:
Swedish Institute of Space Physics, University of Umeå, S-901 87 UMEÅ, Sweden

Abstract

A representation of the physical fields as functions on (k, ω, r, t) phase space can be based on Gaussian windows and Fourier transforms. Within this representation, we obtain a very general formula for the second-order nonlinear current J(k, ω, r, t) in terms of the vector potential A(k, ω, r, t). This formula is a convenient starting point for studies of coherent as well as turbulent nonlinear processes. We derive kinetic equations for weakly inhomogeneous and turbulent plasmas, including the effects of inhomogeneous turbulence, wave convection and refraction.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Biro, T. & Rönnmark, T. 1992 J. Plasma Phys. 47, 465.CrossRefGoogle Scholar
Davidson, R. C. 1972 Methods in Nonlinear Plasma Theory. Academic.Google Scholar
Kadomtsev, B. B. 1965 Plasma Turbulence. Academic.Google Scholar
Larrson, J. 1989 J. Plasma Phys. 42, 479.CrossRefGoogle Scholar
McDonald, S. W. 1988 Phys. Rep. 158, 337.CrossRefGoogle Scholar
Melrose, D. B. 1980 Plasma Astrophysics, vol. 1. Gordon and Breach.Google Scholar
Oscarsson, T. E. & Rönnmark, K. 1989 J. Geophys. Res. 94, 2417.CrossRefGoogle Scholar
Oscarsson, T. E. & Rönnmark, K. 1990 J. Geophys. Res. 95, 21187.Google Scholar
Rönnmark, K. 1989 Geophys. Res. Lett. 16, 731.CrossRefGoogle Scholar
Rönnmark, K. & André, M. 1991 J. Geophys. Res. 96, 17573.CrossRefGoogle Scholar
Rönnmark, K. & Larsson, J. 1988 J. Geophys. Res. 93, 1809.CrossRefGoogle Scholar
Sagdeev, R. Z. & Galeev, A. A. 1969 Nonlinear Plasma Theory, Benjamin.Google Scholar
Storey, L. R. O. & Lefeuvre, F. 1974 Space Res. 14, 381.Google Scholar
Storey, L. R. O. & Lefeuvre, F. 1979 Geophys. J. R. Astron. Soc. 56, 255.CrossRefGoogle Scholar