Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T14:11:38.197Z Has data issue: false hasContentIssue false

The plasma wake field excitation: Recent developments from thermal to quantum regime

Published online by Cambridge University Press:  08 January 2014

RENATO FEDELE
Affiliation:
Dipartimento di Fisica, Università di Napoli “Federico II”, Napoli, Italy (renato.fedele@na.infn.it) INFN Sezione di Napoli, Napoli, Italy
FATEMA TANJIA
Affiliation:
Dipartimento di Fisica, Università di Napoli “Federico II”, Napoli, Italy (renato.fedele@na.infn.it) INFN Sezione di Napoli, Napoli, Italy
SERGIO DE NICOLA
Affiliation:
SPIN-CNR, Complesso Universitario di M.S. Angelo, Napoli, Italy INFN Sezione di Napoli, Napoli, Italy
DUŠAN JOVANOVIĆ
Affiliation:
Institute of Physics, University of Belgrade, Belgrade, Serbia INFN Sezione di Napoli, Napoli, Italy

Abstract

To describe the transverse nonlinear and collective self-consistent interaction of a long relativistic electron or positron beam with an unmagnetized plasma, a pair of coupled nonlinear differential equations were proposed by Fedele and Shukla in 1992 (Fedele, R. and Shukla, P. K. 1992a Phys. Rev. A 45, 4045). They were obtained within the quantum-like description provided by the thermal wave model and the theory of plasma wake field excitation. The pair of equations comprises a 2D Schrödinger-like equation for a complex wave function (whose squared modulus is proportional to beam density) and a Poisson-like equation for the plasma wake potential. The dispersion coefficient of the Schrödinger-like equation is proportional to the beam thermal emittance. More recently, Fedele–Shukla equations have been further applied to magnetized plasmas, and solutions were found in the form of nonlinear vortex states and ring solitons. They have been also applied to plasma focusing problems and extended from thermal to quantum regimes. We present here a review of the original approach, and subsequent developments.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chao, A. and Tigner, M. 1998 Handbook of Accelerator Physics and Engineering. Singapore: World Scientific.Google Scholar
Chen, P. 1987 Part. Accel. 20, 171.Google Scholar
Chen, P., et al. 1985 Phys. Rev. Lett. 54, 693.CrossRefGoogle Scholar
Fedele, R., Galluccio, F., Man'ko, V. I. and Miele, G. 1995a Phys. Lett. A 209, 263.CrossRefGoogle Scholar
Fedele, R. and Miele, G. 1991 Nuovo Cim. D 13, 1527.CrossRefGoogle Scholar
Fedele, R. and Miele, G. 1992 Phys. Rev. A 46, 6634.CrossRefGoogle Scholar
Fedele, R., Miele, G., Palumbo, L. and Vaccaro, V. G. 1993 Phys. Lett. A 179, 407.CrossRefGoogle Scholar
Fedele, R. and Shukla, P. K. 1992a Phys. Rev. A 45, 4045.CrossRefGoogle Scholar
Fedele, R. and Shukla, P. K. 1992b Proceedings of the International Conference on Plasma Physics, Innsbruck, Austria, 29 June–3 July, Vol. II. Strasbourg, France: European Physical Society, p. 1293.Google Scholar
Fedele, R., Shukla, P. K., Vaccaro, V. G. 1995b J. Physique 5 (Colloque 6), c6c119 (Suppl. JP II, n.10).Google Scholar
Fedele, R., Tanjia, F., De Nicola, S., Jovanović, D. and Shukla, P. K. 2012a Phys. Plasmas 19, 102106.CrossRefGoogle Scholar
Fedele, R., Tanjia, F., De Nicola, S., Jovanović, D. and Shukla, P. K. 2012b AIP Conf. Proc. 1421, 212.CrossRefGoogle Scholar
Fedele, R., Tanjia, F., De Nicola, S., Shukla, P. K. and Jovanović, D. 2011 Self-consistent thermal wave model description of the transverse dynamics for relativistic charged particle beams in magnetoactive plasmas In: Proceedings of the 38th EPS Conference on Plasma Physics (ed. Becoulet, A., Hoang, T. and Stroth, U.), Vol. 35G. Strasbourg, France: European Physical Society, P5.006.Google Scholar
Fedele, R., Tanjia, F., Jovanović, D., De Nicola, S. and Ronsivalle, C. to appear in JPP (2013) Wave theories of non-laminar charged particle beams: from quantum to thermal regime. J. Plasma Phys. (and references therein)CrossRefGoogle Scholar
Jang, J.-H., Cho, Y.-S. and Kwon, H.-J. 2007 Phys. Lett. A 366, 246.CrossRefGoogle Scholar
Jang, J.-H., Cho, Y.-S. and Kwon, H.-J. 2010 Nuclear Inst. Methods Phys. Res. A 624, 578.CrossRefGoogle Scholar
Johannisson, P., Anderson, D., Lisak, M., Marklund, M., Fedele, R. and Kim, A. 2004 Phys. Rev. E 69, 066501 (and references therein).CrossRefGoogle Scholar
Jovanović, D., Fedele, R., Tanjia, F., De Nicola, S. and Belić, M. 2012 Europhys. Lett. 100, 55002.CrossRefGoogle Scholar
Jovanović, D., Fedele, R., Tanjia, F., De Nicola, S. and Belić, M. 2013 J. Plasma Phys. 79, 397.CrossRefGoogle Scholar
Katsouleas, 1986 Phys. Rev. A 33, 2056.CrossRefGoogle Scholar
Lawson, J. D. 1976 Particle Beam and Plasmas: Lectures Given in the Academic Training Programme of CERN 1973–1974 (ed. Hofman, A. and Messer-Schmidt, E.), CERN Rep.76-09, 13 May. Meyrin, Geneva, Switzerland: European Organization for Nuclear Research.Google Scholar
Lawson, J. D. 1988 The Physics of Charged Particle Beams, Oxford, UK: Clarendon.Google Scholar
Rosenzweig, J. and Chen, P. 1989 Phys. Rev. D 39, 2039.CrossRefGoogle Scholar
Shen, Y. R. 1984 The Principles of Nonlinear Optics. New York, NY: Wiley-Interscience.Google Scholar
Tanjia, F., De Nicola, S., Fedele, R., Shukla, P. K. and Jovanović, D. 2011 Quantumlike description of the nonlinear and collective effects on relativistic electron beams in strongly magnetized plasmas, In: Proceedings of the 38th EPS Conference on Plasma Physics, Vol. 35G (ed. Becoulet, A., Hoang, T. and Stroth, U.). Strasbourg, France: European Physical Society, P5.021.Google Scholar
Tanjia, F., Fedele, R., De Nicola, S. and Jovanović, D. 2013 J. Plasma Phys. 79, 421.CrossRefGoogle Scholar