Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T05:11:05.030Z Has data issue: false hasContentIssue false

Potential distribution around a charged dust grain in an electronegative plasma

Published online by Cambridge University Press:  20 May 2010

P. K. SHUKLA
Affiliation:
Institut für Theoretische Physik IV, Ruhr-Universität Bochum, D-44780 Bochum, Germany (ps@tp4.ruhr-uni-bochum.de)
L. STENFLO
Affiliation:
Department of Physics, Linköping University, SE-58183 Linköping, Sweden
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The potential distribution around a charged dust grain in an electronegative plasma is obtained by using the appropriate dielectric susceptibilities for the Boltzmann distributed electrons and negative ions, and for the inertial positive ions that are streaming from the bulk plasma into the electronegative plasma sheath. The existence of oscillatory ion wakefields is shown. Positive ions are trapped/focused in the ion wakefields, and subsequently the negative dust particles are attracted to each other, forming ordered dust structures.

Type
Letter to the Editor
Copyright
Copyright © Cambridge University Press 2010

References

[1]Chen, F. F. 1984 Plasma physics. In: Introduction to Plasma Physics and Controlled Fusion, 2nd edn., Vol. 1, New York: Plenum, pp. 810.CrossRefGoogle Scholar
[2]Montgomery, D., Joyce, G. and Sugihara, R. 1968 Plasma Phys. 10, 681.CrossRefGoogle Scholar
[3]Cooper, G. 1969 Phys. Fluids 12, 2707.CrossRefGoogle Scholar
[4]James, C. R. and Vermeulen, F. 1970 Can. J. Phys. 48, 349.CrossRefGoogle Scholar
[5]Stenflo, L., Yu, M. Y. and Shukla, P. K. 1973 Phys. Fluids 16, 450.CrossRefGoogle Scholar
[6]Stenflo, L. and Yu, M. Y. 1973 Phys. Scr. 8, 301; Yu, M. Y., Tegeback, R. and Stenflo, L. 1973 Z. Phys. 264, 341.CrossRefGoogle Scholar
[7]Kim, H. M. and Jung, Y. D. 2008 Phys. Scr. 77, 045503.CrossRefGoogle Scholar
[8]Jung, Y. D. and Kato, D. 2009 Plasma Phys. Control. Fusion 51, 015014.CrossRefGoogle Scholar
[9]Shukla, P. K. and Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. Bristol: IoP.CrossRefGoogle Scholar
[10]Shukla, P. K. and Eliasson, B. 2009 Rev. Mod. Phys. 81, 25.CrossRefGoogle Scholar
[11]Shukla, P. K. 1994 Phys. Plasmas 1, 1362.CrossRefGoogle Scholar
[12]Nambu, M., Vladimirov, S. V. and Shukla, P. K. 1995 Phys. Lett. A 203, 40; Nambu, M. and Vladimirov, S. V. 1995 Phys. Rev. E 52, R2172.CrossRefGoogle Scholar
[13]Shukla, P. K. and Rao, N. N. 1996 Phys. Plasmas 3, 1770.CrossRefGoogle Scholar
[14]Shukla, P. K. and Silin, V. P. 1992 Phys. Scr. 45, 504.CrossRefGoogle Scholar
[15]Rao, N. N., Shukla, P. K. and Yu, M. Y. 1990 Planet. Space Sci. 38, 543.CrossRefGoogle Scholar
[16]Boyd, R. L. F. and Thompson, J. B. 1959 Proc. R. Soc. Lond. A 252, 102.Google Scholar
[17]Hershkowitz, N. 1985 Space Sci. Rev. 41, 351; Hershkowitz, N. 1998 IEEE Trans. Plasma sci. 26, 1610.CrossRefGoogle Scholar
[18]Hatakeyama, R. 2004 Plasma Sci. Source: Sci. Technol. 1, 108.CrossRefGoogle Scholar
[19]Mamun, A. A. and Shukla, P. K. 2003 Phys. Plasmas 10, 1518.CrossRefGoogle Scholar
[20]D'Angelo, N. 2004 J. Phys. D 37, 860.CrossRefGoogle Scholar
[21]Annaratone, B. M. and Allen, J. E. 2005 J. Phys. D 38, 26.CrossRefGoogle Scholar
[22]Kim, S. H. and Merlino, R. L. 2006 Phys. Plasmas 13, 052118; Merlino, R. L. and Kim, S. H. 2006 Appl. Phys. Lett. 89, 091501.CrossRefGoogle Scholar
[23]Li, M., Vyvoda, M. A., Dew, S. K. and Brett, M. J. 2000 IEEE Trans. Plasma Sci. 28, 248.Google Scholar
[24]Ghim (Kim), Y. and Hershkowitz, N. 2009 Appl. Phys. Lett. 94, 151503.CrossRefGoogle Scholar
[25]Mamun, A. A., Shukla, P. K. and Eliasson, B. 2009 Phys. Rev. E 80, 046406.CrossRefGoogle Scholar
[26]Shukla, P. K. and Rosenberg, M. 1999 Phys. Plasmas 6, 1038.CrossRefGoogle Scholar