Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-14T18:05:03.119Z Has data issue: false hasContentIssue false

Probing properties of cold radiofrequency plasma with polymer probe

Published online by Cambridge University Press:  14 July 2014

E. Bormashenko*
Affiliation:
Physics Faculty, Ariel University, 40700 Ariel, Israel Chemical Engineering and Biotechnology Faculty, Ariel University, 40700 Ariel, Israel
G. Chaniel
Affiliation:
Physics Faculty, Ariel University, 40700 Ariel, Israel Physics Faculty, Bar Ilan University, 52900 Ramat Gan, Israel
V. Multanen
Affiliation:
Chemical Engineering and Biotechnology Faculty, Ariel University, 40700 Ariel, Israel
*
Email address for correspondence: edward@ariel.ac.il

Abstract

The probe intended for the characterization of cold plasma is introduced. The probe allows the estimation of Debye length of cold plasma. The probe is based on the pronounced modification of surface properties (wettability) of polymer films by cold plasmas. The probe was tested with the cold radiofrequency inductive air plasma discharge. The Debye length and the concentration of charge carriers were estimated for various gas pressures. The reported results coincide reasonably with the corresponding values established by other methods. The probe makes possible measurement of characteristics of cold plasmas in closed chambers.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bormashenko, E., Chaniel, G. and Grynyov, R. 2013 Towards understanding hydrophobic recovery of plasma-treated polymers: storing in high polarity liquids suppresses hydrophobic recovery. Appl. Surf. Sci. 273, 549553.Google Scholar
Bormashenko, E. and Grynyov, R. 2012 Plasma treatment allows water suspending of the natural hydrophobic powder (lycopodium). Coll. Surf. B. 97, 171174.Google Scholar
Chasseriaux, J. M., Debrie, R and Renard, C. 1972 Electron density and temperature measurements in the lower ionosphere as deduced from the warm plasma theory of the H.F. quadrupole probe. J. Plasma Phys. 8, 231253.Google Scholar
France, R. M. and Short, R. D. 1997 J. Chem. Soc. Faraday Trans. 93, 31733178.CrossRefGoogle Scholar
France, R. M. and Short, R. D. 1998 Langmuir 14 (17), 48274835.Google Scholar
Hegemann, D., Brunner, H. and Oehr, C. 2003 Nuclear instruments and methods. Phys. Res. B 208, 281286.Google Scholar
Hopwood, J. 1992 Review of inductively coupled plasmas for plasma processing. Plasma Sources Sci. Technol. 1, 109.Google Scholar
Hopwood, J. Guarnieri, C. R., Whitehair, S. J. and Cuomo, J. J. 1993 Langmuir probe measurements of a radio frequency induction plasma. J. Vac. Sci. Technol. A. 11, 152156.Google Scholar
Kaminska, A., Kaczmarek, H. and Kowalonek, J. 2002 Eur. Polym. J. 38, 19151919.Google Scholar
Kondoh, T. Asano Nakashima, A. and Komatu, M. 2000 J. Vac. Sci. Technol. 18, 12761280.Google Scholar
Lieberman, M. A. and Lichtenberg, A. J. 2005 Principles of Plasma Discharges and Materials Processing. Hoboken, NJ: J. Wiley.Google Scholar
Mortazavi, M. and Nosonovsky, M. 2012 A model for diffusion-driven hydrophobic recovery in plasma treated polymers. Appl. Surf. Sci. 258, 68766883.Google Scholar
Occhiello, M. Morra, Cinquina, P. and Garbassi, F. 1992 Polymer 33, 30073015.Google Scholar
Occhiello, M. Morra and Garbassi, F. 1991 Appl. Surf. Sci. 47, 235242.Google Scholar
Pascual, M., Balart, R., Sanchez, L., Fenollar, O. and Calvo, O. 2008 J. Mater. Sci. 43, 49014909.Google Scholar
Stenzel, R. L. 1976 Microwave resonator probe for localized density measurements in weakly magnetized plasmas. Rev. Sci. Instrum. 47, 603607.Google Scholar
Strobel, M., Lyons, C. S. and Mittal, K. L. (Eds.) 1994 Plasma Surface Modification of Polymers: Relevance to Adhesion. Utrecht, Netherlands: VSP.Google Scholar
Strobel, M., Lyons, C. S. and Mittal, K. L. (Eds.) 2000 Plasma Surface Modification of Polymers: Relevance to Adhesion, Vol. 2. Zeist, Netherlands: VSP.Google Scholar
Tadmor, R. and Yadav, P. S. 2008 As-placed contact angles for sessile drops. J. Coll. Interface Sci. 317, 241246.Google Scholar
Wild, S. and Kesmodel, L. L. 2001 J. Vac. Sci. Technol. 19, 856860.Google Scholar
Yasuda, H. K. 1984 Plasma Polymerization and Plasma Treatment. New York, NY: J. Wiley.Google Scholar
Yasuda, H. and Sharma, A. K. 1981 Effect of orientation and mobility of polymer molecules at surfaces on contact angle and its hysteresis. J. Polym. Sci. 19, 12851291.Google Scholar