Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T03:25:01.407Z Has data issue: false hasContentIssue false

Ray tracing in an anisotropic absorbing medium

Published online by Cambridge University Press:  13 March 2009

Kurt Suchy†
Affiliation:
Groupe do Recherches lonosphériques du Centre National de la Recherche Scientifique, 4 avenue de Neptune, 94 Saint-Maur, France

Abstract

With the generalized group velocity vg = Re (∂ω/∂k) for media with moderate absorption, derived in a previous paper, the Hamilton equations for group propagation in non-absorbing media are generalized to include moderate absorption. They contain directional derivatives not only in the direction of v but also in the direction of Im (∂ω/∂k). Two iterative computational methods are presented for ray tracing with the generalized Hamilton equations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arley, N. 1945 A note on the foundations of geometric optics. Kgl. Danske Videnskab. Selskab., Mat.-Fys. Medd. 22 (8), 1.Google Scholar
Booker, H. G. 1939 Propagation of wave-packets incident obliquely upon a stratified doubly refracting ionosphere. Phil. Trans. A 237, 411.Google Scholar
Booker, H. G. 1949 The application of the magneto-ionic theory to radio waves incident obliquely upon a horizontally stratified ionosphere. J. Geophys. Res. 54, 243.CrossRefGoogle Scholar
Born, M. & Wolf, E. 1964 Principles of Optics. Pergamon.Google Scholar
Budden, K. G. 1961 Radio Waves in the Ionosphere. Cambridge University Press.Google Scholar
Budden, K. G. 1963 Lectures on magneto-ionic theory. Geophysics, the Earth's Environment (ed. DeWitt, C., Hieblot, J. and Lebeau, A.). Gordon and Breach.Google Scholar
Budden, K. G. & Terry, P. D. 1971 Radio ray tracing in complex space. Proc. Roy. Soc. A 321, 275.Google Scholar
Haselgrove, J. 1955 Ray theory and a new method for ray tracing. The Physics of the Ionosphere, Conf. Cambridge, p. 355. London: The Physical Society.Google Scholar
Jones, R. M. 1970 Ray theory for lossy media. Radio Sci. 5, 793.CrossRefGoogle Scholar
Keller, J. B. 1962 Geometrical theory of diffraction. J. Opt. Soc. Am. 52, 116.Google Scholar
Kline, M. & Kay, I. W. 1965 Electromagnetic Theory and Geometric Optics. Interscience.Google Scholar
Lighthill, M. J. 1960 Studies on magneto-hydrodynamic waves and other anisotropic wave motions. Phil. Trans. A 252, 397.Google Scholar
MacDonald, G. 1961 The spectrum of hydromagnetic waves in the exosphere. J. Geophys. Res. 66, 3639.CrossRefGoogle Scholar
Poeverlein, H. 1962 Sommerfeld–Runge law in three and four dimensions. Phys. Rev. 128, 956.CrossRefGoogle Scholar
Rawer, K. & Suchy, K. 1967 Radio observations of the ionosphere. Handbuch der Physik (ed. Flügge, S.), vol. 49 (2), pp. 1546. Springer.Google Scholar
Roehner, B. 1971 Détermination explicite do la direction do phase stationnaire lors de la transmission d'une onde électromagnetique d'un milieu isotropo absorbant à un autre. Ann. Géophysique. (To be published.)Google Scholar
Seckler, B. D. & Keller, J. B. 1959 Geometrical theory of diffraction in inhomogeneous media. J. Acoust. Soc. Am. 31, 192.CrossRefGoogle Scholar
Smirnow, W. L. 1960 Lehrgang der höheren Mathematik, vol. 1 (3). Berlin: Deutscher Verlag der Wissenschaften.Google Scholar
Sommerfeld, A. & Runge, I. 1911 Anwendung der Vektorrechnung auf die Grundlagen dor geomotrischen Optik. Ann. Phys. (Leipzig), 35, 277.CrossRefGoogle Scholar
Storey, L. R. O. 1953 An investigation of whistling atmospherics. Phil. Trans. A 246, 113.Google Scholar
Storey, O. & Roehner, B. 1970 La direction de phase stationnairo dens un milieu absorbant. C.R. Acad. Sci. (Paris) B 270, 301.Google Scholar
Suchy, K. 1952 Schrittweiser Übergang von der Wellenoptik zur Strahlenoptik in inhomogenen anisotropen absorbierendon Medien. 1. Gleichungen für Wellennormale, Brechungsindex und Polarisation. Ann. Phys. (Leipzig ) 11, 113. (Corrections 1953 Ann. Phys. (Leipzig) 12, 423.Google Scholar
Suchy, K. 1953 Schrittweiser Übergang von der Wellenoptik zur Strahlenoptik in inhomogenon anisotropen absorbierenden Medien. 2. Lösung der Gleichungen für Wellennormale und Brechungsindex durch WBK-Nähenmg. Strahlenoptische Reflexion und Alternation. Ann. Phys. (Leipzig) 13, 178.CrossRefGoogle Scholar
Suchy, K. 1972 The velocity of a wave packet in an anisotropic absorbing medium. J. Plasma Phys. 8, 33.Google Scholar
Synge, J. L. 1954 Geometrical Mechanics and de Broglie Waves. Cambridge University Press.Google Scholar
Whitham, G. B. 1960 A note on group velocity. J. Fluid Mech. 9, 347.Google Scholar