Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T12:14:57.362Z Has data issue: false hasContentIssue false

Self-consistent profile modification in the underdense region of laser-produced plasmas

Published online by Cambridge University Press:  13 March 2009

J. R. Sanmartín
Affiliation:
Escuela Técnica Superior do Ingenieros Aeronáuticos, Universidad Politécnica do Madrid, Spain
J. L. Montañes
Affiliation:
Escuela Técnica Superior do Ingenieros Aeronáuticos, Universidad Politécnica do Madrid, Spain

Abstract

Profile modification in the underdense region of laser-plasmas with spatially uniform temperature Te, is studied. A multiple scale method is used to describe self-consistently the plasma flow and the wave field, in (i) the scale of the field wavelength, and (ii) the overall expansion scale. For Tetaordinary differential equations with definite boundary conditions are obtained. For a = 0 and weak fields, we explicitly solve the equations and relate the field in the critical layer to the incident field.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Attwood, D. T., Sweeney, D. W., Auerbach, J. M. & Lee, P. H. Y. 1978 Phys. Rev. Lett. 40, 184.Google Scholar
Donaldson, T. P. & Spalding, I. J. 1976 Phys. Rev. Lett. 36, 467.Google Scholar
Faehl, R. J. & Kruer, W. L. 1977 Phys. Fluids, 20, 55.CrossRefGoogle Scholar
Forslund, D. W., Kindel, J. M., Lee, K. & Lindman, E. L. 1976 Phys. Rev. Lett. 36, 35.CrossRefGoogle Scholar
Kidder, R. E. 1972 Lawrence Livermore Laboratory Report UCRL.74040.Google Scholar
Kim, H. C., Stenzel, R. L. & Wong, A. Y. 1974 Phys. Rev. Lett. 33, 886.CrossRefGoogle Scholar
Lee, K., Forslund, P. W., Kindel, J. M. & Lindman, E. L. 1977 Phys. Fluids, 20, 51.CrossRefGoogle Scholar
Max, C. E. & McKee, C. F. 1977 Phys. Rev. Lett. 39, 1336.CrossRefGoogle Scholar
Mulser, P. & Van, Kessel C. 1977 Phys. Rev. Lett. 38, 902.CrossRefGoogle Scholar
Nayfeh, A. H. 1973 Perturbation Methods, chs. 6 and 4. Wiley.Google Scholar
Sanmartín, J. R. & Barrero, A. 1978 a Phys. Fluids, 21, 1957.CrossRefGoogle Scholar
Sanmartín, J. R. & Barrero, A. 1978 b Phys. Fluids, 21, 1967.Google Scholar
Sanmartín, J. R. & Montañes, J. L. 1980 Phys. Fluids (to be published).Google Scholar
Stamper, J. A. 1975 Phys. Fluids, 18, 735.Google Scholar
Thompson, J. J., Max, C. E. & Estabrook, K. 1975 Phys. Rev. Lett. 35, 663.CrossRefGoogle Scholar
Valeo, E. J. & Estabrook, K. G. 1975 Phys. Rev. Lett. 34, 1008.Google Scholar
Virmont, J., Pellat, R. & Mora, A. 1978 Phys. Fluids, 21, 567.CrossRefGoogle Scholar