Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T06:53:19.523Z Has data issue: false hasContentIssue false

Simulations of the ion–dust streaming instability with non-Maxwellian ions

Published online by Cambridge University Press:  04 December 2017

K. Quest
Affiliation:
Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA
M. Rosenberg*
Affiliation:
Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA
B. Kercher
Affiliation:
Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA
*
Email address for correspondence: rosenber@ece.ucsd.edu

Abstract

The dust acoustic, or dust density, wave is a very low frequency collective mode in a dusty plasma that is associated with the motion of the charged and massive dust grains. An ion flow due to an electric field can excite these waves via an ion–dust streaming instability. Theories of this instability have often assumed a shifted-Maxwellian ion velocity distribution. Recently, the linear kinetic theory of this instability was considered using a non-Maxwellian ion velocity distribution (Kählert, Phys. Plasmas, vol. 22, 2015, 073703). In this paper, we present one-dimensional PIC simulations of the nonlinear development of the ion–dust streaming instability, comparing the results for these two types of ion velocity distributions, for several values of the ion drift speed and collision rate. Parameters are considered that reflect the ordering of plasma and dust quantities in laboratory dusty plasma experiments. It is found that, in general, the wave energy density is smaller in the simulations with a non-Maxwellian ion distribution.

Type
Research Article
Copyright
© Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albright, N. W. 1974 Stabilization of ion acoustic waves by electron trapping. Phys. Fluids 17, 206210.Google Scholar
Birdsall, C. K. 1991 Particle-in-cell charged-particle simulations plus Monte-Carlo collisions with neutral atoms, PIC–MCC. IEEE Trans. Plasma Sci. 19, 6585.Google Scholar
Fortov, V., Morfill, G., Petrov, O., Thoma, M. et al. 2005 The project ‘Plasmakristall-4’ (PK-4) – a new stage in investigations of dusty plasmas under microgravity conditions: first results and future plans. Plasma Phys. Control. Fusion 47, B537B549.Google Scholar
Fortov, V. E., Khrapak, A. G., Khrapak, S. A., Molotkov, V. I., Nefedov, A. P., Petrov, O. F. & Torchinsky, V. M. 2000 Mechanism of dust-acoustic instability in a direct current glow discharge plasma. Phys. Plasmas 7, 13741380.Google Scholar
Fu, H. & Scales, W. 2012 Nonlinear evolution of the dust acoustic instability in artificially created dusty space plasmas. IEEE Trans. Plasma Sci. 40, 12231228.Google Scholar
Gillespie, D. T. 1993 Fluctuation and dissipation in Brownian motion. Am. J. Phys. 61, 10771083.Google Scholar
Hockney, R. W. & Eastwood, J. W. 1981 Computer Simulation Using Particles. McGraw-Hill.Google Scholar
Joyce, G., Lampe, M. & Ganguli, G. 2002 Instability-triggered phase transition to a dusty-plasma condensate. Phys. Rev. Lett. 88, 095006.Google Scholar
Kählert, H. 2015 Ion-dust streaming instability with non-Maxwellian ions. Phys. Plasmas 22, 073703.Google Scholar
Khrapak, S. A., Ratynskaia, S. V., Zobnin, A. V., Usachev, A. D. et al. 2005 Particle charge in the bulk of gas discharges. Phys. Rev. E 72, 016406.Google Scholar
Lampe, M., Rocker, T. B., Joyce, G., Zhdanov, S. K., Ivlev, A. V. & Morfill, G. E. 2012 Ion distribution function in a plasma with uniform electric field. Phys. Plasmas 19, 113703.Google Scholar
Lemons, D. S., Lackman, J., Jones, M. E. & Winske, D. 1995 Noise-induced instability in self-consistent Monte-Carlo calculations. Phys. Rev. E 52, 68556861.Google Scholar
Merlino, R. L. 2014 25 years of dust acoustic waves. J. Plasma Phys. 80, 773786.Google Scholar
Molotkov, V. I., Nefedov, A. P., Torchinskii, V. M., Fortov, V. E. & Khrapak, A. G. 1999 Dust acoustic waves in a dc glow-discharge plasma. J. Exp. Theor. Phys. 89, 477480.Google Scholar
Nishikawa, K. & Wu, C.-S. 1969 Effect of electron trapping on the ion-wave instability. Phys. Rev. Lett. 23, 10201022.Google Scholar
Pavan, J., Yoon, P. H. & Umeda, T. 2011 Quasilinear theory and simulation of Buneman instability. Phys. Plasmas 18, 042307.Google Scholar
Piel, A., Klindworth, M., Arp, O., Melzer, A. & Wolter, M. 2006 Obliquely propagating dust-density plasma waves in the presence of an ion beam. Phys. Rev. Lett. 97, 205009.Google Scholar
Quest, K., Rosenberg, M., Kercher, B. & Dutreix, M. 2016 Simulations of the dust acoustic instability in a collisional plasma with warm dust. J. Plasma Phys. 82, 905820602.Google Scholar
Rao, N. N., Shukla, P. K & Yu, M. Y. 1990 Dust-acoustic waves in dusty plasmas. Planet. Space Sci. 38, 543546.Google Scholar
Rosenberg, M. 1996 Ion-dust streaming instability in processing plasmas. J. Vac. Sci. Technol. A 14, 631633.Google Scholar
Semenov, I. L., Khrapak, S. A. & Thomas, H. M. 2017 Momentum transfer cross-section for ion scattering on dust particles. Phys. Plasmas 24, 033710.Google Scholar
Shukla, P. K. & Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. IOP Publishing.Google Scholar
Sydora, R. D., Detering, F., Rozmus, W., Bychenkov, Y. Yu., Brantov, A. & Capjack, C. E. 2006 Collisional particle simulation of ion acoustic instability. J. Plasma Phys. 72, 12961298.Google Scholar
Winske, D. 2004 Wave drag due to dust acoustic waves in collisional dusty plasmas. IEEE Trans. Plasma Sci. 32, 663674.Google Scholar
Winske, D. & Rosenberg, M. 1998 Nonlinear development of the dust acoustic instability in a collisional dusty plasma. IEEE Trans. Plasma Sci. 26, 9299.Google Scholar