Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T11:28:41.988Z Has data issue: false hasContentIssue false

Stimulated Raman scattering from a fully focused relativistic electron beam in a waveguide

Published online by Cambridge University Press:  13 March 2009

Robert A. Schill Jr
Affiliation:
Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53706
S. R. Seshadri
Affiliation:
Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53706

Abstract

Stimulated Raman scattering from a fully focused relativistically drifting electron plasma in a parallel-plate waveguide is studied. A set of internally consistent transport relations governing the three-wave interactions is developed. These transport relations lead to the proper conservation of energy and momentum. Including small wall and bulk plasma losses, parametric and nonlinear characteristics are investigated theoretically and numerically. It is found that in an unbounded medium the saturation period of the signal wave is considerably smaller than in a bounded medium. The signal energy comes from the plasma stream through the idler wave with small depletion of the pump wave amplitude.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allis, W. P., Buchsbaum, S. J. & Bers, A. 1963 Waves in Anisotropic Plasmas M.I.T. Press.Google Scholar
Bers, A. 1975 Plasma Physics-Les Houches 1972. Gordon and Breach.Google Scholar
Button, K. J. (ed.) 1979 Infrared and Millimeter Waves. Academic.Google Scholar
Chan, V. S. & Seshadri, S. R. 1975 J. Appl. Phys. 16, 3844.CrossRefGoogle Scholar
Chu, T. K., Hendel, H. W. & Dawson, J. M. 1972 Comm. Plasma Phys. Contr. Fusion, 1, 111.Google Scholar
Granatstein, V. L. & Sprangle, P. 1977 IEEE Trans. MTT-25, 540.Google Scholar
Jacobs, S. F., Moore, G. T., Pilloff, H. S., Sargent, M., Scully, M. O. & Spitzer, R. (ed.) 1982 Physics of Quantum Electronics, vol. 9. Addison-Wesley.Google Scholar
Hasegawa, A. 1978 Bell Systems Tech J. 57, 3069.Google Scholar
Johnk, C. T. A. 1975 Engineering Electromagnetic Fields and Waves. Wiley.Google Scholar
Kaw, P. K., Liu, C. S. & Nishikawa, K. 1976 Advances in Plasma Physics (ed. A. Simon and W. B. Thompson), vol. 6, p. 1.Google Scholar
Kroll, N. M. & McMullin, W. A. 1978 Phys. Rev. A, 17, 300.Google Scholar
Liu, C. S. & Tripathi, V. K. 1984 GA Technologies, Report, GA-A17244.Google Scholar
McDermott, D. B., Marshall, T. C. & Schlesinger, S. P. 1978 Comm. Plasma Phys.Contr. Fusion, 3, 165.Google Scholar
McKinstrie, C. J., Simon, A. & Williams, E. A. 1984 Phys. Fluids, 27, 2738.Google Scholar
Nayfeh, A. H. 1973 Perturbation Methods, ch. 6, p. 228. Wiley.Google Scholar
Ramo, S., Whinnery, J. & Van Duzer, T. 1965 Fields and Waves in Communication Electroniss. Wiley.Google Scholar
Schill, R. A. & Seshadri, S. R. 1985 J. Appl. Phys. 57, 4335.Google Scholar
Seshadri, S. R. 1982 IEEE Trans. MTT-30, 813.Google Scholar
Seshadri, S. R. & Schill, R. A. 1984 J. Appi. Phys. 56, 3330.Google Scholar
Sprangle, P. & Drobot, A. T. 1979 J. Appl. Phys. 50, 2652.CrossRefGoogle Scholar
Steele, M. C. & Vural, B. 1979 Wave Interactions in Solid State Plasmas. McGraw-Hill.Google Scholar
Stix, T. H. 1962 The Theory of Plasma Waves. McGraw-Hill.Google Scholar