Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T14:46:44.806Z Has data issue: false hasContentIssue false

Superbanana and superbanana plateau transport in finite aspect ratio tokamaks with broken symmetry

Published online by Cambridge University Press:  05 December 2014

K. C. Shaing*
Affiliation:
Institute for Space and Plasma Sciences, National Cheng Kung University, Tainan 70101, Taiwan Engineering Physics Department, University of Wisconsin, Madison 53706, WI, USA
*
Email address for correspondence: kcs@pssc.ncku.edu.tw

Abstract

Superbanana and superbanana plateau transport processes are critical to plasma confinement in tokamaks with broken symmetry. The transport is caused by the superbanana resonance, which occurs at a pitch angle that makes the toroidal drift speed vanish, i.e. the tips of the superbananas. The physics consequences of the resonance on the symmetry breaking induced toroidal momentum damping and on the energetic alpha particle transport have been demonstrated using large aspect ratio expansion. Here, the existing theory for the superbanana and superbanana plateau transport is extended for finite aspect ratio tokamaks with broken symmetry. The effects of finite plasma β, and magnetic field shear are naturally included. Here, β is the ratio of the thermal plasma pressure to the magnetic field pressure. The explicit expressions for the transport fluxes in these regimes in terms of the equilibrium quantities are presented. It is shown that the main effects are to modify the resonance function G(k) and the expression for the pitch angle parameter k in the existing theory.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Connor, J. W., Hastie, R. J. and Martin, T. J. 1983 Effect of pressure-gradients on the bounce-averaged particle drifts in a tokamak. Nucl. Fusion 23, 1702.Google Scholar
Galeev, A. A. and Sagdeev, R. Z. 1979 Theory of neoclassical diffusion. In: Review of Plasma Physics, Vol. 7 (ed. Leontovich, M. A.). New York, Consultant Bureau, p. 257.Google Scholar
Gibson, A. and Mason, D. W. 1969 Binary collision losses in stellarators. Plasma Phys. 11, 121.Google Scholar
Goldston, R. J., White, R. B. and Boozer, A. H. 1981 Confinement of high-energy trapped-particles in tokamaks. Phys. Rev. Lett. 47, 647.Google Scholar
Hamada, S. 1962 Hydromagnetic equilibria and their proper coordinates. Nucl. Fusion 2, 23.Google Scholar
Hastie, R. J., Taylor, J. B. and Haas, F. A. 1967 Adiabatic invariants and equilibrium of magnetically trapped particles. Ann. Phys. 41, 302.CrossRefGoogle Scholar
Hastings, D. E. and Shaing, K. C. 1985 Superbanana plateau regime transport in a multiple-helicity torsatron and a bumpy torus. Phys. Fluids 28, 1402.Google Scholar
Hazeltine, R. D. and Catto, P. J. 1981 Bumpy torus transport in the low collision frequency limit. Phys. Fluids 24, 290.Google Scholar
Hinton, F. L. and Hazetline, R. D. 1976 Theory of plasma transport in toroidal confinement systems. Rev. Mod. Phys. 48, 239.Google Scholar
Hirshman, S. P. and Sigmar, D. J. 1976 Approximate fokker-planck collision operator for transport-theory applications. Phys. Fluids 19, 1532.Google Scholar
Isaev, M. Yu., Mikhailov, M. I. and Shafranov, V. D. 1994 Quasi-symmetrical toroidal magnetic systems. Plasma Phys. Rep. 20, 319.Google Scholar
Kadomtsev, B. B. and Pogutse, O. 1966 Sov. Phys. JETP 24, 1172.Google Scholar
Kadomtsev, B. B. and Pogutse, O. 1967 Plasma instability due to particle trapping in a toroidal geometry. Zh. Eksp. Teor. Fiz. 51, 734Google Scholar
Martitsch, A. F., Kasilov, S. V., Kernbichler, W. and Maassberg, H. 2014 Evaluation of non-ambipolar particle fluxes driven by external non-resonant magnetic perturbations in a tokamak. In: Proc. of 41st EPS Conf. on Plasma Physics, p. 1–048.Google Scholar
Rosenbluth, M. N. and Sloan, M. L. 1971 Finite-beta stabilization of collisionless trapped particle instability. Phys. Fluids 14, 1725.Google Scholar
Shaing, K. C. 2003 Magnetohydrodynamic-activity-induced toroidal momentum dissipation in collisionless regimes in tokamaks. Phys. Plasmas 10, 1443.Google Scholar
Shaing, K. C. and Hsu, C. T. 2012 Neoclassical theory inside transport barriers in tokamaks. Phys. Plasmas 19, 022 502.Google Scholar
Shaing, K. C. and Hsu, C. T. 2014 Transport theory for energetic alpha particles and tolerable magnitude of error fields in tokamaks with broken symmetry. Nucl. Fusion 54, 033 012.Google Scholar
Shaing, K. C., Hsu, C. T. and Dominguez, N. 1994 Resonance parallel viscosity in the banana regime in poloidally rotating tokamak plasmas. Phys. Plasmas 1, 1168.Google Scholar
Shaing, K. C., Sabbagh, S. A. and Chu, M. S. 2009a Neoclassical toroidal plasma viscosity in the superbanana plateau regime for tokamaks. Plasma Phys. Control. Fusion 51, 035 009.Google Scholar
Shaing, K. C., Sabbagh, S. A. and Chu, M. S. 2009b Neoclassical toroidal plasma viscosity in the superbanana regime in tokamaks. Plasma Phys. Control. Fusion 51, 055 003.Google Scholar
Shaing, K. C., Sabbagh, S. A. and Peng, M. 2007 Neoclassical plasma viscosity for an axisymmetric toroidal equilibrium with multiple trapping of particles. Phys. Plasmas 14, 024 501.Google Scholar
Sun, Y., Liang, Y., Shaing, K. C., Kostowski, H. R., Wiegmann, C. and Zhang, T. 2010 Neoclassical toroidal plasma viscosity torque in collisionless regimes in tokamaks. Phys. Rev. Lett. 105, 145 002.Google Scholar
Sun, Y., Liang, Y., Shaing, K. C., Kostowski, H. R., Wiegmann, C. and Zhang, T. 2011 Modelling of the neoclassical toroidal plasma viscosity torque in tokamaks. Nucl. Fusion 54, 053 015.CrossRefGoogle Scholar
Yavorskij, V. A., Andrushchenko, Zh. N., Edenstrasser, J. W. and Goloborod'ko, V. Ya. 1999 Three-dimensional Fokker-planck equation for trapped fast ions in a Tokamak with weak toroidal field ripples. Phys. Plasmas 6, 3853.Google Scholar
Yavorskij, V., Moskvitin, A., Moskvitina, Yu., Goloborod'ko, V. and Schoepf, K. 2010 3D Fokker-planck description of TF ripple induced collisional transport of fast ions in tokamaks. Nucl. Fusion 50, 084 022.CrossRefGoogle Scholar
Yushmanov, P. N. 1990 Diffusive transport processes caused by ripple in tokamaks. In: Review of Plasma Physics, Vol. 16, New York, Consultants Bureau.Google Scholar