Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-14T03:48:43.101Z Has data issue: false hasContentIssue false

Thermodynamic processes in dusty plasma

Published online by Cambridge University Press:  23 October 2020

K. Avinash*
Affiliation:
Sikkim University, 6th Mile, Samdur, P.O. Tadong-737102, Gangtok, Sikkim, India
*
Email address for correspondence: khareavinash82@gmail.com

Abstract

Here, we propose a thermodynamic model for dusty plasma, where the dust is confined in a small volume within a large plasma background by external fields. In this model, the parameters of dust, e.g. Helmholtz energy, pressure, entropy and enthalpy, etc. can be calculated for given dust density and temperature. The model is solved analytically in the mean field (gaseous) limit and various processes associated with the gaseous phase of dust, e.g. adiabatic/isothermal/constant internal energy expansion/compression, specific heat, free expansion within the plasma background, and the dispersion of novel acoustic waves are studied. Some predictions of the model, e.g. electrostatic pressure of the dust and the isothermal equation of state, have been earlier verified in experiments and numerical simulations. The model is compared with an earlier thermodynamic model of dusty plasma proposed by Hamaguchi and Farouki.

Type
Research Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonova, T., Du, C.-R., Ivlev, A. V., Annaratonne, B. M., Hou, L.-J., Kompaneets, R., Thomas, H. M. & Morfill, G. E. 2012 Microparticles deep in the plasma sheath: Coulomb ‘explosion’. Phys. Plasmas 19, 093709-1093709-6.CrossRefGoogle Scholar
Avinash, K. 2010 a Thermodynamics of the interconversion of heat and work via plasma electric fields. Phys. Plasmas 17, 123710-1123710-6.CrossRefGoogle Scholar
Avinash, K. 2010 b Plasma heat pump and heat engine. Phys. Plasmas 17, 082105-1082105-8.CrossRefGoogle Scholar
Avinash, K. & Kaw, P. K. 2014 Plasma heating by electric field compression. Phys. Rev. Lett. 112, 185002-1185002-4.CrossRefGoogle ScholarPubMed
Barkan, A. & Merlino, R. L. 1995 Confinement of dust particles in a double layer. Phys. Plasmas 2, 32613265.CrossRefGoogle Scholar
Davidson, R. C. 1990 Physics of Non Neutral Plasmas. Addison-Wesley.Google Scholar
Farouki, R. T. & Hamaguchi, S. 1994 Thermodynamic of strongly-coupled Yukawa systems near the one-component plasma limit. II. Molecular dynamic simulations. J. Chem. Phys. 101, 98859893.CrossRefGoogle Scholar
Fisher, R., Avinash, K., Thomas, E., Merlino, R. & Gupta, V. 2013 Thermal energy density of dust in dusty plasma: experiment and theory. Phys. Rev. E 88, 031101-1031101-5.CrossRefGoogle ScholarPubMed
Fisher, R. & Thomas, E. 2010 Thermal properties of a dusty plasma in the presence of dust acoustic waves. IEEE Trans. Plasma Sci. 38, 833837.CrossRefGoogle Scholar
Goertz, C. K. 1989 Dusty plasma in the solar system. Rev. Geophys. 27, 271292.CrossRefGoogle Scholar
Goussard, J.-O. & Roulet, B. 1993 Free expansion for real gases. Am. J. Phys. 61, 845848.CrossRefGoogle Scholar
Hamaguchi, S. & Farouki, R. T. 1994 Thermodynamic of strongly-coupled Yukawa systems near the one-component plasma limit. I. Derivation of the excess energy. J. Chem. Phys. 101, 98769884.CrossRefGoogle Scholar
Havnes, O., Goertz, C. K., Morfill, G. E., Grun, E. & Ip, W. 1987 Dust charge, cloud potential and instabilities in a dust cloud embedded in a plasma. J. Geophys. Res. 92, 22812288.CrossRefGoogle Scholar
Ivlev, A. V. 2013 Coulomb expansion: analytical solutions. Phys. Rev. E 87, 025102-1025102-3.CrossRefGoogle ScholarPubMed
Ivlev, A. V., Kretschmer, M., Zuzic, M., Morfill, G. E., Rothermel, H., Thomas, H. M., Fortov, V. E., Molotkov, V. I., Nefedov, A. P., Lipaev, A. M., et al. 2003 Decharging of complex plasma: first kinetic observations. Phys. Rev. Lett. 90, 055003-1055003-4.CrossRefGoogle ScholarPubMed
Merlino, R. L., Meyer, J. K., Avinash, K. & Sen, A. 2016 Coulomb fission of a dusty plasma. Phys. Plasmas 23, 064506-1064506-4.CrossRefGoogle Scholar
Piel, A. & Goree, J. A. 2013 Collisional and collision less expansion of Yukawa balls. Phys. Rev. E 88, 063103-1063103-11.CrossRefGoogle Scholar
Pilch, I., Piel, A., Trottenberg, T. & Koepke, M. E. 2007 Dynamics of small dust clouds trapped in a magnetized anodic plasma. Phys. Plasmas 14, 123704-1123704-8.CrossRefGoogle Scholar
Quinn, R. A. & Goree, J. 2000 a Single particle Langevin model of particle temperature in dusty plasma. Phys. Rev. E 61, 30333041.CrossRefGoogle Scholar
Quinn, R. A. & Goree, J. 2000 b Experimental investigation of particle heating in strongly coupled dusty plasma. Phys. Plasmas 7, 39043911.CrossRefGoogle Scholar
Saxena, V., Avinash, K. & Sen, A. 2012 Dust cluster explosion. Phys. Plasmas 19, 093706-1093706-5.CrossRefGoogle Scholar
Shukla, M., Avinash, K., Mukherjee, R. & Ganesh, R. 2017 Isothermal equation of state of three dimensional Yukawa gas. Phys. Plasmas 24, 113704-1113704-6.CrossRefGoogle Scholar
Thomas, J. E. Jr. 2010 Driven dust acoustic wave with thermal effects: comparison of experiment to fluid theory. Phys. Plasmas 17, 043701-1043701-8.CrossRefGoogle Scholar
Trottenberg, T., Block, D. & Piel, A. 2006 Dust confinement and dust acoustic waves in weakly ionized anodic plasma. Phys. Plasmas 13, 042105-1042105-10.CrossRefGoogle Scholar
Williams, J. 2019 Measurements of thermal effects in the dust acoustic wave. IEEE Trans. Plasma Sci. 47, 31073112.CrossRefGoogle Scholar