Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T04:51:58.024Z Has data issue: false hasContentIssue false

Time-fractional study of electron acoustic solitary waves in plasma of cold electron and two isothermal ions

Published online by Cambridge University Press:  13 June 2012

S. A. EL-WAKIL
Affiliation:
Theoretical Physics Group, Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt (abulwafa@mans.edu.eg)
ESSAM M. ABULWAFA
Affiliation:
Theoretical Physics Group, Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt (abulwafa@mans.edu.eg)
EMAD K. EL-SHEWY
Affiliation:
Theoretical Physics Group, Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt (abulwafa@mans.edu.eg) Science and Arts College in Al-Rass, Physics Department, Qassim University, Al-Rass Province, Saudi Arabia
ABEER A. MAHMOUD
Affiliation:
Theoretical Physics Group, Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt (abulwafa@mans.edu.eg)

Abstract

In this paper, a homogeneous system of unmagnetized collisionless plasma consisting of a cold electron fluid, low-temperature ion obeying Boltzmann-type distribution and high-temperature ion obeying non-thermal distribution is considered. The perturbation method with two different forms of stretching will be considered to drive the KdV and modified KdV (mKdV) equations. The Agrawal's method is applied to formulate the time-fractional KdV and mKdV equations. A variational iteration method is used to solve these equations. The results show that the fractional order of the differential equations can be used to modify the shape of the solitary pulse instead of adding higher order dissipation terms to the equations. This study may be useful to construct the compressive and rarefactive electrostatic potential pulses associated with the broadband electrostatic noise type emissions.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrawal, O. P. 2002 Formulation of Euler–Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272, 368379.CrossRefGoogle Scholar
Agrawal, O. P. 2006 Fractional variational calculus and the transversality conditions. J. Phys. A: Math. Gen. 39, 10375–10 384.CrossRefGoogle Scholar
Agrawal, O. P. 2007 Fractional variational calculus in terms of Riesz fractional derivatives, J. Phys. A: Math. Theor. 40, 62876303.CrossRefGoogle Scholar
Ajlouni, A. M. S. and Al-Rabai'ah, H. A. 2010 Fractional-calculus diffusion equation. Nonlinear Biomed. Phy. 4 (1), 310.CrossRefGoogle ScholarPubMed
Asbridge, R., Bame, S. J. and Strong, I. B. 1968 Outward flow of protons from the Earth's bow shock. J. Geophys. Res. 73 (12), 57775782.CrossRefGoogle Scholar
Atanacković, T. M., Konjik, S., Oparnica, L. J. and Pilipović, S. 2010 Generalized Hamilton's principle with fractional derivatives. J. Phys. A: Math. Theor. 43, 255203 (12 pages).CrossRefGoogle Scholar
Baleanu, D., Golmankhaneh, A. K., Nigmatullin, R. and Golmankhaneh, A. K. 2010 Fractional Newtonian mechanics. Cent. Eur. J. Phys. 8 (1), 120125.Google Scholar
Buti, B., Mohan, M. and Shukla, P. K. 1980 Exact electron-acoustic solitary waves J. Plasma Phys. 23 (2), 341347.CrossRefGoogle Scholar
Cairns, R. A., Mamum, A. A., Bingham, R., Boström, R., Dendy, R. O., Nairn, C. M. C. and Shukla, P. K. 1995 Electrostatic solitary structures in nonthermal plasmas. Geophys. Res. Lett. 22 (20), 27092712.CrossRefGoogle Scholar
Cattell, C. A., Dombeck, J., Wygant, J. R., Hudson, M. K., Mozer, F. S., Temerin, M. A., Peterson, W. K., Kletzing, C. A., Russell, C. T. and Pfaff, R. F. 1999 Comparisons of polar satellite observations of solitary wave velocities in the plasma sheet boundary and the high altitude cusp to those in the auroral zone. Geophys. Res. Lett. 26 (3), 425428.CrossRefGoogle Scholar
Cattell, C. A., Mozer, F. S., Anderson, R. R., Hones, E. W. and Sharp, R. D. 1986 ISEE observations of the plasma sheet boundary, plasma sheet, and neutral sheet: 2. Waves. J. Geophys. Res. 91, 56815688.CrossRefGoogle Scholar
Chandrashekar, C. M. 2010 Fractional recurrence in discrete-time quantum walk. Cent. Eur. J. Phys. 8 (6), 979988.Google Scholar
Chatterjee, P. and Roychoudhury, R. 1995 Arbitrary-amplitude electron acoustic solitary waves in a plasma. J. Plasma Phys. 53 (1), 2529.CrossRefGoogle Scholar
Devanandhan, S., Singh, S. V. and Lakhina, G. S. 2011a Electron acoustic solitary waves with kappa-distributed electrons, Phys. Scr. 84, 025507 (6 pages).CrossRefGoogle Scholar
Devanandhan, S., Singh, S. V., Lakhina, G. S. and Bharuthram, R. 2011b Electron acoustic solitons in the presence of an electron beam and superthermal electrons. Nonlinear Process. Geophys. 18, 627634.CrossRefGoogle Scholar
Dubouloz, I., Pottellette, R., Malingre, M., Holmgren, G. and Lindqvist, P. A. 1991 Detailed analysis of broadband electrostatic noise in the dayside auroral zone. J. Geophys. Res. 96, 35653579.CrossRefGoogle Scholar
El-Shewy, E. K. 2007 Linear and nonlinear properties of electron-acoustic solitary waves with non-thermal electrons. Chaos, Solitons Fractals 31 (4), 10201024.CrossRefGoogle Scholar
El-Wakil, S. A., Abulwafa, E. M., Zahran, M. A. and Mahmoud, A. A. 2011a Time-fractional KdV equation: formulation and solution using variational methods. Nonlinear Dyn. 65 (1–2), 5563.CrossRefGoogle Scholar
El-Wakil, S. A., Abulwafa, E. M., Zahran, M. A. and Mahmoud, A. A. 2011b Formulation of some fractional evolution equations used in mathematical physics. Nonlinear Sci. Lett. A 2 (1), 3746.Google Scholar
Feldman, W. C., Anderson, R. C., Bame, S. J., Gary, S. P., Gosling, J. T., McComas, D. J., Thomsen, M. F., Paschmann, G. and Hoppe, M. M. 1983 Electron velocity distributions near the earth's bow shock. J. Geophys. Res. 88, 96110.CrossRefGoogle Scholar
Golmankhaneh, A. K., Golmankhaneh, A. K. and Baleanu, D. 2011 On nonlinear fractional Klein–Gordon equation, Signal Process. 91 (3), 446451.CrossRefGoogle Scholar
Gurnett, D. A., Frank, L. A. and Lepping, R. P. 1976 Plasma waves in the distant magnetotail J. Geophys. Res. 81, 60596071.CrossRefGoogle Scholar
He, J.-H. 1997a A new approach to nonlinear partial differential equations. Commun. Nonlinear Sci. Numer. Simul. 2 (4), 230235.CrossRefGoogle Scholar
He, J.-H. 1997b Semi-inverse method of establishing generalized variational principles for fluid mechanics with emphasis on turbo-machinery aerodynamics. Int. J. Turbo Jet-Engines 14 (1), 2328.CrossRefGoogle Scholar
He, J.-H. 1999 Variational-iteration – a kind of nonlinear analytical technique: some examples. Int. J. Nonlinear Mech. 34, 699708.CrossRefGoogle Scholar
He, J.-H. 2004 Variational principles for some nonlinear partial differential equations with variable coefficients. Chaos Solitons Fractals 19, 847851.CrossRefGoogle Scholar
Herzallah, M. A. E., Muslih, S. I., Baleanu, D. and Rabei, E. M. 2011 Hamilton-Jacobi and fractional like action with time scaling. Nonlinear Dyn. 66 (4), 549555.CrossRefGoogle Scholar
Ikezawa, S. and Nakamura, Y. 1981 Observation of electron plasma waves in plasma of two-temperature electrons. J. Phys. Soc. Japan 50 (3), 962967.CrossRefGoogle Scholar
Inokuti, M., Sekine, H. and Mura, T. 1978 General use of the Lagrange Multiplier in non-linear mathematical physics. In: Variational Method in the Mechanics of Solids (ed. Nemat-Nasser, S.). Oxford: Pergamon Press, p. 156162.Google Scholar
Kakad, A. P., Singh, S. V., Reddy, R. V., Lakhina, G. S. and Tagare, S. G. 2009 Electron acoustic solitary waves in the Earth's magnetotail region. Adv. Space Res. 43 (12), 19451949.CrossRefGoogle Scholar
Kilbas, A., Srivastava, H. M. and Trujillo, J. J. 2006 Theory and Applications of Fractional Differential Equations. New York: Elsevier Science Inc.Google Scholar
Lundin, R., Zakharov, A., Pellinen, R., Hultqvist, B., Borg, H., Dubinin, E., Barabash, S., Pissarenko, N., Koskinen, H. and Liede, I. 1989 First measurements of the ionospheric plasma escape from Mars. Nature 341, 609612.CrossRefGoogle Scholar
Matsumoto, H., Kojima, H., Miyatake, T., Omura, Y., Okada, M., Nagano, I. and Tsutsui, M. 1994 Electrostatic solitary waves (ESW) in the magnetotail: BEN wave forms observed by GEOTAIL. Geophys. Res. Lett. 21 (25), 29152918.CrossRefGoogle Scholar
Mozer, F. S., Ergun, R., Temerin, M., Cattell, C., Dombeck, J. and Wygant, J. 1997 New features of time domain electric-field structures in the auroral acceleration region. Phys. Rev. Lett. 79 (7), 12811284.CrossRefGoogle Scholar
Muslih, S. I. and Agrawal, O. P. 2010 Riesz fractional derivatives and fractional dimensional space. Int. J. Theor. Phys. 49, 270275.CrossRefGoogle Scholar
Podlubny, I. 1999 Fractional Differential Equations. San Diego: Academic Press.Google Scholar
Pottelette, R., Ergun, R. E., Treumann, R. A., Berthomier, M., Carlson, C. W., McFadden, J. P., and Roth, I. 1999 Modulated electron-acoustic waves in auroral density cavities: FAST observations. Geophys. Res. Lett. 26 (16), 26292632.CrossRefGoogle Scholar
Rabei, E. M., Rawashdeh, I. M., Muslih, S. I. and Baleanu, D. 2011 Hamilton-Jacobi formulation for systems in terms of Riesz's fractional derivatives. Int. J. Theor. Phys. 50 (5), 15691576.CrossRefGoogle Scholar
Singh, S. V. and Lakhina, G. S. 2001 Generation of electron-acoustic waves in the magnetosphere Planet. Space Sci. 49 (1), 107114.CrossRefGoogle Scholar
Singh, S. V. and Lakhina, G. S. 2004 Electron acoustic solitary waves with non-thermal distribution of electrons. Nonlinear Process. Geophys. 11, 275279.CrossRefGoogle Scholar
Singh, S. V., Lakhina, G. S., Bharuthram, R. and Pillay, S. R. 2011 Electrostatic solitary structures in presence of non-thermal electrons and a warm electron beam on the auroral field lines, Phys. Plasmas 18, 122306 (7 pages).CrossRefGoogle Scholar
Singh, S. V., Reddy, R. V. and Lakhina, G. S. 2001 Broadband electrostatic noise due to nonlinear electron acoustic waves. Adv. Space Res. 28 (11), 16431648.CrossRefGoogle Scholar
Tagare, S. G., Singh, S. V., Reddy, R. V. and Lakhina, G. S. 2004 Electron acoustic solitons in the Earth's magnetotail. Nonlinear Process. Geophys. 11, 215218.CrossRefGoogle Scholar
Tejedor, V. and Metzler, R. 2010 Anomalous diffusion in correlated continuous time random walks. J. Phys. A: Math. Theor. 43, 082002 (6 pages).CrossRefGoogle Scholar
Washimi, H. and Taniuti, T. 1966 Propagation of ion-acoustic solitary waves of small amplitude. Phys. Rev. Lett. 17 (19), 996998.CrossRefGoogle Scholar